Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Potential of Lightweight Materials and Advanced Combustion Engines to Reduce Life Cycle Energy and Greenhouse Gas Emissions

2014-04-01
2014-01-1963
As lightweight materials and advanced combustion engines are being used in both conventional and electrified vehicles with diverse fuels, it is necessary to evaluate the individual and combined impact of these technologies to reduce energy and greenhouse gas (GHG) emissions. This work uses life cycle assessment (LCA) to evaluate the total energy and GHG emissions for baseline and lightweight internal combustion vehicles (ICVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) when they are operated with baseline and advanced gasoline and ethanol engines. Lightweight vehicle models are evaluated with primary body-in-white (BIW) mass reductions using aluminum and advanced/high strength steel (A/HSS) and secondary mass reductions that include powertrain re-sizing. Advanced engine/fuel strategies are included in the vehicle models with fuel economy maps developed from single cylinder engine models.
Technical Paper

A Life Cycle Assessment of Natural Fiber Reinforced Composites in Automotive Applications

2014-04-01
2014-01-1959
Automakers have the opportunity to utilize bio-based composite materials to lightweight cars while replacing conventional, nonrenewable resource materials. In this study, Life Cycle Assessment (LCA) is used to understand the potential benefits and tradeoffs associated with the implementation of bio-based composite materials in automotive component production. This cradle-to-grave approach quantifies the fiber and resin production as well as material processing, use, and end of life for both a conventional glass-reinforced polypropylene component as well as a cellulose-reinforced polypropylene component. The comparison is calculated for an exterior component on a high performance vehicle. The life cycle primary energy consumption and global warming potential (GWP) are evaluated. Reduced GWP associated with the alternative component are due to the use of biomass as process energy and carbon sequestration, in addition to the alternative material component's lightweighting effect.
X