Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Exploration of Semi-Volatile Particulate Matter Emissions from Low Temperature Combustion in a Light-Duty Diesel Engine

2014-04-01
2014-01-1306
Diesel low temperature combustion (LTC) is an operational strategy that is effective at reducing soot and oxides of Nitrogen (NOx) emissions at low engine loads in-cylinder. A downside to LTC in diesel engines is increased hydrocarbon (HC) emissions. This study shows that semi-volatile species from LTC form the bulk of particulate matter (PM) upon dilution in the atmosphere. The nature of gas-to-particle conversion from high HC operating modes like LTC has not been well characterized. In this work, we explore engine-out PM and HC emissions from LTC and conventional diffusion combustion (CC) operation for two different engine load and speed modes using a modern light-duty diesel engine. An experimental method to investigate PM volatility was implemented. Raw exhaust was diluted under two dilution conditions. A tandem differential mobility analyzer (TDMA) was used to identify differences in volatility between particle sizes.
Journal Article

Diesel Exhaust Aerosol Measurements Using Air-Ejector and Porous Wall Dilution Techniques

2011-04-12
2011-01-0637
The objective of this work is to improve the understanding of variables like dilution and sampling conditions that contribute to particle-based emission measurements by assessing and comparing the nucleation tendency of diesel aerosols when diluted with a porous wall dilutor or an air ejector in a laboratory setting. An air-ejector dilutor and typical dilution conditions were used to establish the baseline sensitivity to dilution conditions for the given engine operating condition. A porous tube dilutor was designed and special attention was given to integrating the dilutor with the exhaust pipe and residence time chamber. Results from this system were compared with the ejector dilutor. Exhaust aerosols were generated by a Deere 4045 diesel engine running at low speed (1400 rpm) and low load (50 Nm, ~10% of rated). Primary dilution parameters that were varied included dilution air temperature (25 and 47°C) and dilution ratio (5, 14, and 55).
Technical Paper

Parametric 1-D Modeling Study of a 5-Stroke Spark-Ignition Engine Concept for Increasing Engine Thermal Efficiency

2015-04-14
2015-01-1752
In recent years, there has been growing interest in alternative cycles to the standard 4-stroke Otto engine for improving efficiency and lowering emissions of spark-ignition engines. One proposed concept is the 5-stroke engine which uses two types of cylinders, a combustion cylinder and an expansion cylinder with a transfer port between them. Excess pressure in the combustion cylinder can be further expanded by using a second expansion cylinder to harness additional work. The expansion cylinder runs on a two-stroke cycle, allowing the use of two combustion cylinders to one expansion cylinder in a three cylinder configuration to increase efficiency. Previous work has investigated the performance of prototype 5-stroke engines compared to 1-D modeling results; none have conducted a thorough study on the interactions of various design parameters.
X