Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

On-Orbit and Ground Performance of the PGBA Plant Growth Facility

1997-07-01
972366
PGBA, a plant growth facility developed for commercial space biotechnology research, successfully grew a total of 50 plants (6 species) during 10 days aboard the Space Shuttle Endeavor (STS-77), and has reflown aboard the Space Shuttle Columbia (STS-83 for 4 days and STS-94 for 16 days) with 55 plants and 10 species. The PGBA life support system provides atmospheric, thermal, and humidity control as well as lighting and nutrient supply in a 33 liter microgravity plant growth chamber. The atmosphere treatment system removes ethylene and other hydrocarbons, actively controls CO2 replenishment, and provides passive O2 control. Temperature and humidity are actively controlled.
Technical Paper

Design and Evaluation of a Payload to Support Plant Growth onboard COMET 1

1992-07-01
921389
P-MASS, the Plant-Module for Autonomous Space Support, is designed to support and provide life support for a variety of plants, algae and bacteria in low earth orbit during the maiden flight of COMET-1. The first launch is scheduled for early 1993. With a nominal mission duration of 30 days in microgravity, P-MASS will bridge the gap between the shorter duration experiments possible onboard the NSTS Space Shuttle (approximately 14 days) and the future Space Station Freedom for space biology applications. Environmental data and video images are collected, stored onboard and downlinked daily. In addition, the payload and all specimens will be returned for ground analysis with the recovery system (reentry capsule). P-MASS is designed within a payload envelope of 0.28 x 0.22 x 0.32 m (19.71) and a mass of approximately 20 kg. A total of 115 Watt electric power is available continuously for the Plant-Module (60 W lighting, 40 Watt cooling, 15 W housekeeping).
Technical Paper

Global Estimates of the Photosynthetically Active Radiation at the Mars Surface

2005-07-11
2005-01-2813
This paper reports on the approach and progress to refine the estimates of the Mars surface photosynthetically active radiation (PAR) on a global scale that is averaged over a longer time period. While the PAR on Mars has been evaluated previously, the results have been limited in scope either temporally or spatially, such as only at a particular landing site or only over the time span of a few months. Understanding the availability of PAR is important in evaluating the practicality of using greenhouses and/or solar irradiance collectors for growing crops during manned missions to the Martian surface. Until surface investigations can be performed, computational modeling of the surface PAR can help to refine site selection and evaluation of engineering approaches and indicate the most favorable location at which to operate a greenhouse. The proposed approach is to combine multispectral irradiance models with global atmospheric opacity models developed from multiyear observations.
Technical Paper

Optimizing the Structural Subsystem of the AG-Pod Crop Production Unit

2000-07-10
2000-01-2477
The Autonomous Garden Pod (AG-Pod) is a modular crop production system that can lower the equivalent system mass (ESM) for bioregenerative life support systems. AG-Pod combines existing technologies, many of which are at the technology readiness level (“TRL”) 8 or 9, into a flight-ready system adaptable to many needs from Space Station microgravity plant research to interplanetary transit and planetary surface food production systems. The plant-rated module resides external to the spacecraft pressurized volume and can use natural direct solar illumination. This reduces the ESM of crop production systems by eliminating the use of spacecraft internal pressurized volume and by reducing power and heat rejection resources that would be needed for full artificial lighting. However, lowering of the crop production ESM is also achieved from the use of lightweight structures including composite and inflatable technology.
Technical Paper

Re-examining Aeroponics for Spaceflight Plant Growth

2000-07-10
2000-01-2507
Aeroponics is the process of growing plants in an air/mist environment without the use of soil or an aggregate media. Aeroponics has contributed to advances in several areas of study including root morphology, nutrient uptake, drought and flood stress, and responses to variations in oxygen and/or carbon dioxide root zone concentrations. The adaptability of the aeroponic process that has benefited researchers makes its application to spaceflight plant growth systems appealing. Greater control of growth parameters permits a greater range of crop performance throttling and the elimination of aggregates or common growth substrates lowers system mass, lessens disease propagation between plants, and can decrease the required crew time for both planting and harvesting.
X