Refine Your Search

Search Results

Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

2007-06-12
2007-01-2482
Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
Technical Paper

Development of Surrogate Child Restraints for Testing Occupant Sensing and Classification Systems

2004-03-08
2004-01-0843
This paper describes the design and development of a family of surrogate child restraints that are intended for use in developing and testing occupant sensing and classification systems. Detailed measurements were made of the geometry and mass distribution characteristics of 34 commercial child restraints, including infant restraints, convertibles, combination restraints, and boosters. The restraints were installed in three test seats with appropriately sized crash dummies to obtain data on seat-surface pressure patterns and the position and orientation of the restraint with belt loading. The data were used to construct two surrogates with removable components. The convertible surrogate can be used to represent a rear-facing infant restraint with or without a base, a rear-facing convertible, or a forward-facing convertible. The booster surrogate can represent a high-back belt-positioning booster, a backless booster, or a forward-facing-only restraint with a five-point harness.
Technical Paper

Improved ATD Positioning Procedures

2001-03-05
2001-01-0117
Current anthropomorphic test device (ATD) positioning procedures for drivers and front-seat passengers place the crash dummy within the vehicle by reference to the seat track. Midsize-male ATDs are placed at the center of the fore-aft seat track adjustment range, while small-female and large-male ATDs are placed at the front and rear of the seat track, respectively. Research on occupant positioning at UMTRI led to the development of a new ATD positioning procedure that places the ATDs at positions more representative of the driving positions of people who match the ATD's body dimensions. This paper presents a revised version of the UMTRI ATD positioning procedure. The changes to the procedure improve the ease and repeatability of ATD positioning while preserving the accuracy of the resulting ATD positions with respect to the driving positions of people matching the ATD anthropometry.
Technical Paper

Development of Performance Specifications for the Occupant Classification Anthropomorphic Test Device (Ocatd)

2001-06-04
2001-06-0063
Advanced airbag systems use a variety of sensors to classify vehicle occupants so that the airbag deployment can be modulated accordingly. One potential input to such systems is the distribution of pressure applied to the seat surface by the occupant. However, the development of such systems is hindered by the lack of suitable human surrogates. The OCATD program has developed two new surrogates for advanced airbag applications representing a small adult woman and a six-year-old child. This paper describes the development of performance specifications for the OCATDs based on a study of the seat surface pressure distributions produced by vehicle occupants. The pressure distributions of sixty-eight small women and children ranging in body weight between 23 and 48 kg were measured on four seats in up to twelve postures per seat. The data were analyzed to determine the parameters of the pressure distribution that best predict occupant body weight.
Technical Paper

Development of Seatbelt Fit Assessment Components for the ASPECT Manikin

2002-03-04
2002-01-0686
As part of the Automotive Seat and Package Evaluation and Comparison Tools (ASPECT) program, UMTRI researchers developed a new H-point manikin that is intended to replace the current SAE J826 manikin. The original manikin is used in many automotive applications, including as a platform for a belt-fit test device (BTD). In the current project, components and procedures were developed to measure belt fit using the ASPECT manikin. Contoured lap and torso forms were constructed using anthropometric data from an earlier UMTRI study. Prototype forms were mounted on the ASPECT manikin for testing in a laboratory fixture and in vehicles. The testing demonstrated that the ASPECT-BTD produces consistent measures of belt fit that vary in expected ways with belt geometry.
Technical Paper

A Pilot Study of Occupant Accommodation and Seat Belt Fit for Law Enforcement Officers

2016-04-05
2016-01-1504
Law enforcement officers (LEO) make extensive use of vehicles to perform their jobs, often spending large portions of a shift behind the wheel. Few LEO vehicles are purpose-built; the vast majority are modified civilian vehicles. Data from the field indicate that LEO suffer from relatively high levels musculoskeletal injury that may be due in part to poor accommodation provided by their vehicles. LEO are also exposed to elevated crash injury risk, which may be exacerbated by a compromise in the performance of the occupant restraint systems due to body-borne equipment. A pilot study was conducted to demonstrate the application of three-dimensional anthropometric scanning and measurement technology to address critical concerns related to vehicle design. Detailed posture and belt fit data were gathered from five law enforcement officers as they sat in the patrol vehicles that they regularly used and in a mockup of a mid-sized vehicle.
Technical Paper

Knee, Thigh and Hip Injury Patterns for Drivers and Right Front Passengers in Frontal Impacts

2003-03-03
2003-01-0164
Late model passenger cars and light trucks incorporate occupant protection systems with airbags and knee restraints. Knee restraints have been designed principally to meet the unbelted portions of FMVSS 208 that require femur load limits of 10-kN to be met in barrier crashes up to 30 mph, +/- 30 degrees utilizing the 50% male Anthropomorphic Test Device (ATD). In addition, knee restraints provide additional lower-torso restraint for belt-restrained occupants in higher-severity crashes. An analysis of frontal crashes in the University of Michigan Crash Injury Research and Engineering Network (UM CIREN) database was performed to determine the influence of vehicle, crash and occupant parameters on knee, thigh, and hip injuries. The data sample consists of drivers and right front passengers involved in frontal crashes who sustained significant injuries (Abbreviated Injury Scale [AIS] ≥ 3 or two or more AIS ≥ 2) to any body region.
Technical Paper

Evaluation of the SAE J826 3-D Manikin Measures of Driver Positioning and Posture

1994-03-01
941048
This study was initiated to evaluate the performance of the SAE J826 3-D manikin in seats that span a range of cushion firmness and contour levels. The manikin measures of H-point location, seatback angle, and seatpan angle (measured using a modified-manikin procedure) are compared with the human measures of hip-joint-center (HJC) location, torso angle, and thigh angle for forty drivers. The results indicate that the manikin H-point provides a reasonably consistent, though somewhat offset, measure of driver HJC location for the range of seats tested. This study found that seats with the same manikin-measured seatback angle produce different occupant torso angles. The data also suggest that for a given vehicle seat, the manikin-measured seatback angle can be used to predict the change in torso angle produced by adjusting the seatback inclination.
Technical Paper

Seated Posture of Vehicle Occupants

1983-10-17
831617
This paper describes the methodology and results from a project involving development of anthropometrically based design specifications for a family of advanced adult anthropomorphic dummies. Selection of family members and anthropometric criteria for subject sample selection were based on expected applications of the devices and on an analysis of U.S. population survey data. This resulted in collection of data for dummy sizes including a small female, a mid-sized male, and a large male. The three phases of data collection included: 1. in-vehicle measurements to determine seat track position and seating posture preferred by the subjects for use in development of laboratory seat bucks; 2. measurement of subject/seat interface contours for fabrication of an average hard seat surface for use in the buck; and 3. measurement of standard anthropometry, seated anthropometry (in the buck), and three-dimensional surface landmark coordinates using standard and photogrammetric techniques.
Technical Paper

Anthropometric and Postural Variability: Limitations of the Boundary Manikin Approach

2000-06-06
2000-01-2172
Human figure models are commonly used to facilitate ergonomic assessments of vehicle driver stations and other workplaces. One routine method of workstation assessment is to conduct a suite of ergonomic analyses using a family of boundary manikins, chosen to represent a range of anthropometric extremes on several dimensions. The suitability of the resulting analysis depends both on the methods by which the boundary manikins are selected and on the methods used to posture the manikins. The automobile driver station design problem is used to examine the relative importance of anthropometric and postural variability in ergonomic assessments. Postural variability is demonstrated to be nearly as important as anthropometric variability when the operator is allowed a substantial range of component adjustment. The consequences for boundary manikin procedures are discussed, as well as methods for conducting accurate and complete assessments using the available tools.
Technical Paper

Anthropometry for WorldSID A World-Harmonized Midsize Male Side Impact Crash Dummy

2000-06-19
2000-01-2202
The WorldSID project is a global effort to design a new generation side impact crash test dummy under the direction of the International Organization for Standardization (ISO). The first WorldSID crash dummy will represent a world-harmonized mid-size adult male. This paper discusses the research and rationale undertaken to define the anthropometry of a world standard midsize male in the typical automotive seated posture. Various anthropometry databases are compared region by region and in terms of the key dimensions needed for crash dummy design. The Anthropometry for Motor Vehicle Occupants (AMVO) dataset, as established by the University of Michigan Transportation Research Institute (UMTRI), is selected as the basis for the WorldSID mid-size male, updated to include revisions to the pelvis bone location. The proposed mass of the dummy is 77.3kg with full arms. The rationale for the selected mass is discussed. The joint location and surface landmark database is appended to this paper.
Technical Paper

Challenges in Frontal Crash Protection of Pregnant Drivers Based on Anthropometric Considerations

1999-03-01
1999-01-0711
Pregnant occupants pose a particular challenge to safety engineers because of their different anthropometry and the additional “occupant within the occupant.” A detailed study of the anthropometry and seated posture of twentytwo pregnant drivers over the course of their pregnancies was conducted. Subjects were tested in an adjustable seating buck that could be configured to different vehicle package geometries with varying belt anchorage locations. Each subject was tested four times over the course of her pregnancy to examine changes in seat positioning, seated anthropometry, and positioning of the lap and shoulder belts with gestational age. Data collected include preferred seating positions of pregnant drivers, proximity of the pregnant occupant to the steering wheel and airbag module, contours of the subjects’ torsos and abdomens relative to seat-belt centerline contours, and subject perceptions of their seated posture and proximity to vehicle components.
Technical Paper

Automobile Occupant Posture Prediction for Use with Human Models

1999-03-01
1999-01-0966
A new method of predicting automobile occupant posture is presented. The Cascade Prediction Model approach combines multiple independent predictions of key postural degrees of freedom with inverse kinematics guided by data-based heuristics. The new model, based on posture data collected in laboratory mockups and validated using data from actual vehicles, produces accurate posture predictions for a wide range of passenger car interior geometries. Inputs to the model include vehicle package dimensions, seat characteristics, and occupant anthropometry. The Cascade Prediction Model was developed to provide accurate posture prediction for use with any human CAD model, and is applicable to many vehicle design and safety assessment applications.
Technical Paper

ASPECT Manikin Applications and Measurements for Design, Audit, and Benchmarking

1999-03-01
1999-01-0965
The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) manikin provides new capabilities for vehicle and seat measurement while maintaining continuity with previous practices. This paper describes how the manikin is used in the development of new designs, the audit verification of build, and in benchmarking competitive vehicles and seats. The measurement procedures are discussed in detail, along with the seat and package dimensions that are associated with the new tool.
Technical Paper

ASPECT: The Next-Generation H-Point Machine and Related Vehicle and Seat Design and Measurement Tools

1999-03-01
1999-01-0962
The ASPECT program was conducted to develop new Automotive Seat and Package Evaluation and Comparison Tools. This paper presents a summary of the objectives, methods, and results of the program. The primary goal of ASPECT was to create a new generation of the SAE J826 H-point machine. The new ASPECT manikin has an articulated torso linkage, revised seat contact contours, a new weighting scheme, and a simpler, more user-friendly installation procedure. The ASPECT manikin simultaneously measures the H-point location, seat cushion angle, seatback angle, and lumbar support prominence of a seat, and can be used to make measures of seat stiffness. In addition to the physical manikin, the ASPECT program developed new tools for computer-aided design (CAD) of vehicle interiors. The postures and positions of hundreds of vehicle occupants with a wide range of body size were measured in many different vehicle conditions.
Technical Paper

Design and Development of the ASPECT Manikin

1999-03-01
1999-01-0963
The primary objective of the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program was to develop a new generation of the SAE J826 H-point manikin. The new ASPECT manikin builds on the long-term success of the H-point manikin while adding new measurement capability and improved ease of use. The ASPECT manikin features an articulated torso linkage to measure lumbar support prominence; new contours based on human subject data; a new weighting scheme; lightweight, supplemental thigh, leg, and shoe segments; and a simpler, user-friendly installation procedure. This paper describes the new manikin in detail, including the rationale and motivation for the design features. The ASPECT manikin maintains continuity with the current SAE J826 H-point manikin in important areas while providing substantial new measurement capability.
Technical Paper

Human Subject Testing in Support of ASPECT

1999-03-01
1999-01-0960
The ASPECT program, conducted to develop new Automotive Seat and Package Evaluation and Comparison Tools, used posture and position data from hundreds of vehicle occupants to develop a new physical manikin and related tools. Analysis of the relationships between anthropometric measures established the criteria for subject selection. The study goals and the characteristics of the data collected determined the sampling approach and number of subjects tested in each study. Testing was conducted in both vehicle and laboratory vehicle mockups. This paper describes the subject sampling strategies, anthropometric issues, and general data collection methods used for the program's eight posture studies.
Technical Paper

Development of a Reusable, Rate-Sensitive Abdomen for the Hybrid III Family of Dummies

2001-11-01
2001-22-0002
The objective of this work was to develop a reusable, rate-sensitive dummy abdomen with abdominal injury assessment capability. The primary goal for the abdomen developed was to have good biofidelity in a variety of loading situations that might be encountered in an automotive collision. This paper presents a review of previous designs for crash dummy abdomens, a description of the development of the new abdomen, results of testing with the new abdomen and instrumentation, and suggestions for future work. The biomechanical response targets for the new abdomen were determined from tests of the mid abdomen done in a companion biomechanical study. The response of the abdominal insert is an aggregate response of the dummy’s entire abdominal area and does not address differences in upper versus lower abdominal response, solid versus hollow organs, or organ position or mobility.
Technical Paper

Biomechanical Considerations for Assessing Interactions of Children and Small Occupants with Inflatable Seat Belts

2013-11-11
2013-22-0004
NHTSA estimates that more than half of the lives saved (168,524) in car crashes between 1960 and 2002 were due to the use of seat belts. Nevertheless, while seat belts are vital to occupant crash protection, safety researchers continue efforts to further enhance the capability of seat belts in reducing injury and fatality risk in automotive crashes. Examples of seat belt design concepts that have been investigated by researchers include inflatable, 4-point, and reverse geometry seat belts. In 2011, Ford Motor Company introduced the first rear seat inflatable seat belts into production vehicles. A series of tests with child and small female-sized Anthropomorphic Test Devices (ATD) and small, elderly female Post Mortem Human Subjects (PMHS) was performed to evaluate interactions of prototype inflatable seat belts with the chest, upper torso, head and neck of children and small occupants, from infants to young adolescents.
X