Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

EMU Thermal Performance Characteristics

1998-07-13
981720
The NASA JSC Shuttle EMU computer model (SINDA EMU) is presently used to analyze the thermal behavior of the Space Shuttle EMU. This paper uses the SINDA EMU model along with EMU experimental and flight data to investigate and define several performance characteristics of the Space Shuttle EMU related to thermal comfort control.
Technical Paper

Exercise Chamber Design Based on Parametric Analysis

1998-07-13
981722
This paper discusses the development of an exercise chamber as one of the requirements for a planned generalized EVA Simulation Test Bed. The design of the outer chamber and associated environmental control equipment is discussed, followed by a sensitivity analysis of the parameters of a human thermal model leading to a design for the inner chamber.
Technical Paper

Evaluation of Human Thermal Models for EVA Applications

1996-07-01
961487
A detailed comparison has begun of the structure and function of two human thermal models, the 41-Node Man model and the Wissler model, being considered for use in a proposed simulation test bed to model the fully transient extravehicular activity (EVA) automatic thermal control problem. The evaluation is directed toward demonstrating the current state of the art in human thermal modeling methodology and performance. Internal formulative differences between the models is the primary focus.
Technical Paper

PLSS Transient Thermal Modeling for Control

1996-07-01
961482
A transient thermal model of the portable life support system (PLSS) is being developed for use in thermal control studies. The transient thermal PLSS (TTPLSS) model has been developed and implemented using SIMULINK in conjunction with MATLAB. The TTPLSS has been developed with modularity and flexibility in mind so that alternative PLSS designs and configurations can easily be implemented and evaluated. The basic structure and functionality of the TTPLSS SIMULINK model is described and demonstrated. The various thermal dynamics issues associated with the PLSS such as time delays and the dynamics of individual components are discussed and considered.
Technical Paper

Design of a Transient Thermal Model of the Cryogenic PLSS

1999-07-12
1999-01-2000
The existing Shuttle Extravehicular Mobility Unit (EMU) has served NASA well for sometime, however, it uses a large amount of consumables including water, O2 and lithium hydroxide. In order for extended missions to the Moon and Mars to be successful, two new portable life support systems (PLSS) designs have been proposed that will minimize the amount of consumables used and will be more reliable due to simplified designs. This paper considers one such PLSS, currently designated the Cryogenic-PLSS (CPLSS). The reason for this designation is because it uses liquid O2 to provide the breathing gas for the astronaut and to provide backup cooling for the astronaut. In order to understand how the system will function in space and to evaluate final design parameters, a transient thermal model has been developed using the software package MATLAB/Simulink.
Technical Paper

Dynamic Modeling of the Minimum Consumables PLSS

1999-07-12
1999-01-1999
A transient model of the Minimum Consumables Portable Life Support System (MPLSS) Advanced Space Suit design has been developed and implemented using MAT-LAB/Simulink. The purpose of the model is to help with sizing and evaluation of the MPLSS design and aid development of an automatic thermal comfort control strategy. The MPLSS model is described, a basic thermal comfort control strategy implemented, and the thermal characteristics of the MPLSS Advanced Space Suit are investigated.
X