Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Cycle Resolved Flow Field Measurements Using a PIV Movie Technique in a SI Engine

1992-10-01
922354
2-dimensional time resolved (200 frames/s) flow field measurements have been made in a transparent SI square piston engine using a movie version of particle image velocimetry (PIV). To this end the beam of a copper vapor laser was formed into a light sheet and was double pulsed with a pulse separation of 50 μs at a repetition rate of 200 Hz. A rotating drum camera was used to record the Mie-scattered signals from seeding particles. The circumferential velocity of the drum of the camera causes an image shifting of the two exposures taken with a double pulse. By proper adaption of drum and engine speed, a series of up to 70 double pulsed images per individual engine cycle may be recorded on film. This film data may be evaluated uniquely with respect to both magnitude and direction of individual flow vectors in the flow field.
Technical Paper

Quantitative 2D LIF Measurements of Air/Fuel Ratios During the Intake Stroke in a Transparent SI Engine

1992-10-01
922320
The fluorescence characteristics of different carbonyl compounds were investigated in a pressurized bomb using an excimer laser (308 nm) for excitation. The partial pressure of the carbonyl compounds and air was varied between 0 - saturation pressure and 0 - 5 bar, respectively. The fluorescence signal of different ketones increased almost linearly with vapour pressure. It was found to be almost independent of air pressure indicating only a weak quenching influence of oxygen. Ethylmethylketone (EMK) has a boiling temperature and vapour pressure similar to gasoline. Therefore, the applicability of EMK for measuring 2-D fuel distributions in a combustion chamber was tested in a transparent SI square piston engine. EMK was injected into the intake manifold by a conventional injector for studying the fuel/air mixing during the intake and compression stroke at 1.000 rpm. From the 2-D fluorescence signals 2-D air/fuel ratios were calculated using calibration data from bomb experiments.
Technical Paper

Cycle-Resolved Hydrogen Flame Speed Measurements with High Speed Schlieren Technique in a Hydrogen Direct Injection SI Engine

1994-10-01
942036
The influence of internal mixture formation oil hydrogen combustion in a SI engine was investigated using high speed Schlieren photography. To this end a computer controlled high pressure injection system for direct injection of gaseous hydrogen was developed. The injection system for hydrogen direct injection consists of an electronic control unit, a solenoid valve and a purpose developed injector. The timing and the duration of the hydrogen injection are controlled by an electronic unit. The fuel-air ratio was varied by adjusting the opening time of the solenoid valve. The hydrogen was fed into the combustion chamber of the engine with a pressure of 6.0 MPa. With this injection system and injection pressure it, is possible to inject the hydrogen into the combustion chamber of the engine even during hydrogen combustion. In order to compare the results of internal mixture formation, experiments with external mixture formation were also performed.
Technical Paper

Quantitative Time Resolved 2-D Fuel-Air Ratio Measurements in a Hydrogen Direct Injection SI Engine Using Spontaneous Raman Scattering

1996-05-01
961101
A two-dimensional technique for the quantitative determination of the fuel-air ratio in hydrogen fuelled engines has been developed. The technique is based on the spontaneous Raman scattering of the hydrogen molecules (Stokes Q-branch) and the simultaneous measurement of the pressure inside the combustion chamber. From these data the local partial pressure of the hydrogen and, therefore, the fuel-air ratio can be calculated. This method was applied in a single cylinder direct injection research engine in order to prove the applicability of this technique under real engine conditions. The measurements inside the side chamber of the engine show a fast mixing process of the compressed air and the injected hydrogen (6 MPa injection pressure) independent of the injection timing.
Technical Paper

The Quantification of Laser-Induced Incandescence (LII) for Planar Time Resolved Measurements of the Soot Volume Fraction in a Combusting Diesel Jet

1996-05-01
961200
Quantitative Laser-Induced Incandescence (LII) has been applied to investigate the soot formation in a combusting Diesel jet for various conditions. For the quantification of the LII signal the local soot volume fraction of a diffusion flame burner was measured using laser beam extinction. These data were used for the calibration of the LII signal. The investigation of the soot formation in a combusting Diesel jet was performed in a high pressure, high temperature combustion chamber with optical access. A wide range of pressure (up to 10 MPa) and temperature (up to 1,500 K) conditions could be covered using a hydrogen precombustion, which is initiated inside the chamber before fuel injection. The influence of different gas atmospheres have been investigated by varying the gas composition (H2, O2 and N2) inside the chamber.
Technical Paper

A Phenomenological Combustion Model for Heat Release Rate Prediction in High-Speed DI Diesel Engines with Common Rail Injection

2000-10-16
2000-01-2933
This paper presents a phenomenological single-zone combustion model which meets the particular requirements of high speed DI diesel engines with common rail injection. Therefore the model takes into account the freely selectable pilot and main injection and is strongly focusing on result parameters like combustion noise or NO-emission which are affected by this split injection. The premixed combustion, the mixing-controlled combustion and the ignition delay are key parts of the model. The model was developed and tested on more than 200 samples from three different engine types of DaimlerChrysler passenger car engines equipped with common rail injection. A user-friendly parameterization and a short computing time was achieved thanks to the simple structure of the model.
Technical Paper

Development of High Speed Spectroscopic Imaging Techniques for the Time Resolved Study of Spark Ignition Phenomena

2000-10-16
2000-01-2833
This paper reports on the development of novel time resolved spectroscopic imaging techniques for the study of spark ignition phenomena in combustion cells and an SI-engine. The techniques are based on planar laser induced fluorescence imaging (PLIF) of OH radicals, on fuel tracer PLIF, and on chemiluminescence. The techniques could be achieved at repetition rates reaching several hundreds of kilo-Hz and were cycle resolved. These techniques offer a new path along which engine related diagnostics can be undertaken, providing a wealth of information on turbulent spark ignition.
X