Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Validation of ADVISOR as a Simulation Tool for a Series Hybrid Electric Vehicle

1998-02-23
981133
One of the most widely used computer simulation tools for hybrid electric vehicles (HEVs) is the ADvanced VehIcle SimulatOR (ADVISOR) developed by the National Renewable Energy Laboratory. The capability to quickly perform parametric and sensitivity studies for specific vehicles is a unique and invaluable feature of ADVISOR. However, no simulation tool is complete without being validated against measured vehicle data to insure the reliability of its predictions. This paper details the validation of ADVISOR using data from the Virginia Tech FutureCar Challenge Lumina, a series HEV. The modeling process is discussed in detail for each of the major components of the hybrid system: transmission; electric motor and inverter; auxiliary power unit (fuel and emissions); batteries; and miscellaneous vehicle parameters. The integration of these components into the overall ADVISOR model is also described. The results of the ADVISOR simulations are then explained.
Technical Paper

Design of a Zero Emission Sport Utility Vehicle for FutureTruck 2002

2003-03-03
2003-01-1264
The Hybrid Electric Vehicle Team (HEVT) of Virginia Tech has designed a fuel cell hybrid electric vehicle to compete in the 2002 FutureTruck Challenge. This year the competition is focused on reducing tailpipe emissions and increasing vehicle efficiency without compromising vehicle performance. The team has converted a Ford Explorer into an environmentally friendly truck. Our truck has an AC induction drive motor, regenerative braking to capture kinetic energy, compressed hydrogen fuel storage system, and a lead acid battery pack. The Virginia Tech FutureTruck emits only water from the vehicle. The fuel cell stacks have been sized to make the 35.8 mpg (combined adjusted gasoline equivalent) vehicle charge sustaining.
Technical Paper

A Multi– / Inter–Disciplinary Approach to Fuel Cell System Development: The U.S. DoE GATE Center for Automotive Fuel Cell Systems at Virginia Tech

2000-04-02
2000-01-1555
A discussion of the need for and the advantages of fuel cell systems and technologies is presented as is a description of the multi– / inter–disciplinary efforts currently underway at Virginia Polytechnic Institute and State University (Virginia Tech) for fuel cell system development. As part of these efforts, the Virginia Tech GATE (Graduate Automotive Technology Education) Center for Automotive Fuel Cell Systems is collaborating in research and education with both government and industry. The current focus of the center is the development of research, laboratory and educational programs in support of the design and implementation of fuel cell systems technology in advanced vehicles. Five GATE Fellowships are being funded by the DoE at the center starting Fall of 1999.
Technical Paper

Performance of Automotive Fuel Cell Stack

2000-04-02
2000-01-1529
Energy Partners developed, designed, built, and tested a 20 kWe automotive fuel cell stack, which was then used in Virginia Tech's 1999 Future Car Challenge hybrid electric vehicle. Performance of the stack on a “state-of-the-art” test stand at Energy Partners is compared to data taken while the stack was in operation in the vehicle. Overall, the stack in the vehicle performed as expected. The difference in performance may be explained by different operating conditions. System considerations, such as temperature, humidification, reactant stoichiometry, monitor and control software necessary for proper fuel cell operation, are presented and reviewed.
Technical Paper

Systems Integration and Performance Issues in a Fuel Cell Hybrid Electric Vehicle

2000-03-06
2000-01-0376
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) has integrated a proton exchange membrane fuel cell as the auxiliary power unit of a series hybrid design to produce a highly efficient zero-emission vehicle. A 1997 Chevrolet Lumina sedan, renamed ANIMUL H2, carries this advanced powertrain, using an efficient AC induction drivetrain, regenerative braking, compressed hydrogen fuel storage, and an advance lead-acid battery pack for peak power load leveling. The fuel cell supplies the average power demand and to sustain the battery pack state-of-charge within a 40-80% window. To optimize system efficiency, a load-following strategy controls the fuel cell power level. The vehicle weighed 2000kg (4400lb) and achieved a combined city/highway fuel economy of 9L/100 km or 26 mpgge (miles per gallon gasoline equivalent).
X