Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Strategy for Monitoring Trace Contaminants on International Space Station

1998-07-13
981742
The complexity of the atmosphere aboard the International Space Station (ISS) will require a multifaceted monitoring strategy for both nominal and emergency conditions to protect the health and safety of the crew. Samples to be collected for air-quality assessment will include both archival sampling for ground analysis and on-board automatic analyses. Archival samples will be analyzed after return by standard gas chromatography/mass spectrometry; a separate formaldehyde analysis will be conducted as well. On-orbit analyses are planned for specific combustion products and for specific volatile organic compounds of toxicological significance. The air-lock will be monitored after EVAs to ensure that no propellants are introduced into the cabin atmosphere. Additional remote samples can be collected in sample bags from other ISS elements and brought to the Volatile Organic Analyzer (VOA) for analysis.
Technical Paper

Advanced Telemedicine System Concepts for Planetary Exploration Missions

1998-07-13
981596
Human missions to Mars will represent not only a departure from the relative protection and proximity of low Earth orbit but also the way space missions are currently conducted. Traveling at 180,000 miles per second, radiofrequency communication will require up to 20 minutes to reach Mars from Earth. Extended periods of communication blackout may leave the Mars-nauts without Earth contact for weeks. Crews will be on their own to recover from mission complications, including serious crew member illness or injury. These conditions dictate unique applications of telemedicine.
Technical Paper

Pulmonary Toxicity of Lunar Highland Dust

2009-07-12
2009-01-2379
Lunar dust exposures occurred during the Apollo missions while the crew was in the lunar module on the moon's surface and especially when micro-gravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes, and in some cases, respiratory symptoms were elicited. NASA's current vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust in the habitat need to be assessed. NASA is performing this assessment with a series of in vitro and in vivo tests with authentic lunar dust. Our approach is to “calibrate” the intrinsic toxicity of lunar dust by comparison to a relatively low toxicity dust (TiO2) and a highly toxic dust (quartz) using intrapharyngeal instillation of the dusts to mice. A battery of indices of toxicity is assessed at various time points after the instillations.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere with Emphasis on Metox Canister Regeneration

2003-07-07
2003-01-2647
Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples returned from ISS on flights 8A, UF2, 9A, and 11A were analyzed for trace pollutants. On average, the air during this period of operations was safe for human respiration. However, about 3 hours into the regeneration of 2 Metox canisters in the U.S. airlock on 20 February 2002 the crew reported an intolerable odor that caused them to stop the regeneration, take refuge in the Russian segment, and scrub air in the U.S. segment for 30 hours. Analytical data from grab samples taken during the incident showed that the pollutants released were characteristic of nominal air pollutants, but were present in much higher concentrations.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere, Part 2

2001-07-09
2001-01-2396
Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples from ISS flights 2A.2a, 2A.2b, 3A, and 4A were analyzed for trace pollutants. On average the air during each flight was safe for human respiration. However, there were reports from the crew that they experienced a headache when in certain areas, and strong odors were reported from specific locations of the ISS complex. Inspection of air samples in these locations suggested that several of the solvent-type pollutants (e.g. ethyl acetate, xylenes, and n-butanol) were present in concentrations that would cause a strong odor to be perceived by some individuals.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere from Mission 5A to 8A

2002-07-15
2002-01-2299
There are many sources of air pollution that can threaten air quality during space missions. The International Space Station (ISS) is an extremely complex platform that depends on a multi-tiered strategy to control the risk of excessive air pollution. During the seven missions surveyed by this report, the ISS atmosphere was in a safe, steady-state condition; however, there were minor loads added as new modules were attached. There was a series of leaks of octafluoropropane, which is not directly toxic to humans, but did cause changes in air purification operations that disrupted the steady state condition. In addition, off-nominal regeneration of metal oxide canisters used during extravehicular activity caused a serious pollution incident.
X