Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effects of Fuel Volatility on Combustion Characteristics of PCCI Diesel Engine

2007-07-23
2007-01-1862
In PCCI diesel engine, the fuel is injected much earlier than the injection timing of conventional diesel engines. Exhaust-emission improvements are attained by the lean-premixed combustion. It is expected that fuel properties influence mixture formation and combustion characteristics. In this research, experiments were carried out using a single-cylinder PCCI diesel engine operating on pure fuels with different volatilities. The injection timing and overall equivalence ratio of the premixed spray were varied. The results showed that the maximum heat release rate was smaller for lower-volatility fuel while ISFC was maintained smaller. So the combustion of a lower-volatility fuel would moderately make progress.
Technical Paper

Effect of Hydrogen Fraction in Intake Mixture on Combustion and Exhaust Emission Characteristics of a Diesel Engine

2009-09-13
2009-24-0086
The present study experimentally investigated the performance and emission characteristics of the diesel engine with hydrogen added to the intake air at late diesel-fuel injection timings. The diesel-fuel injection timing and the hydrogen fraction in the intake mixture were varied while the gross heating value per second of diesel fuel and hydrogen was kept constant at a certain value. NO showed minimum at specific hydrogen fraction. The maximum rate of incylinder pressure rise also showed minimum at 10 vol% hydrogen fraction. The indicated thermal efficiency was almost constant or slightly increased with small amount of hydrogen. A combination of hydrogen addition and late diesel-fuel injection timing contributed to low temperature combustion, in which NO decreased without the increase in unburned fuel.
Technical Paper

Noise Generating Mechanism at Idling for a Four-cylinder In-line Diesel Engine

2003-05-05
2003-01-1720
The separation of combustion noise and mechanical noise from the total noise of a four-cylinder in-line diesel engine at idling was carried out with high accuracy by changing the fuel injection timing. The mechanical noise, which accounts for the major share at 93%, was then separated into noises from the typical mechanical causes, and the valve train was found to be the major noise source. From analysis of the noise generating mechanism for the valve train, it was clarified that the noise was caused mainly by the gear rattling owing to the variation in the camshaft drive torque.
Technical Paper

Experimental Study on Intake Noise Generation in Marine Outboard Motors

2005-10-12
2005-32-0076
Noise reduction is the needs of the time even for (demanded even from) the outboard motors which are typically used under heavy load and in higher engine speed for an extended period of time. For the sound emitted by an outboard motor, the acoustic impression to human ears largely depends on the high frequency intake noise. The high frequency intake noise is generated by the air flow that passes through the intake pipes at high speed. The test performed with a flow stand bench demonstrated that the sound pressure increment relative to the increasing flow velocity is definitely larger in high frequency band compared with that in low frequency band. Pressure wave form inside the intake pipe was measured relative to the crank angle. The measurement revealed that the high frequency sound is generated in the later part of the intake stroke when the flow velocity within the intake pipe becomes the highest.
X