Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Vehicle Design for Robust Driveline NVH Due to Imbalance and Runout Using a Monte Carlo Process

2011-05-17
2011-01-1546
Variation in vehicle noise, vibration and harshness (NVH) response can be caused by variability in design (e.g. tolerance), material, manufacturing, or other sources of variation. Such variation in the vehicle response causes a higher percentage of produced vehicles with higher levels (out of specifications) of NVH leading to higher number of warranty claims and loss of customer satisfaction, which are proven costly. Measures must be taken to ensure less warranty claims and higher levels of customer satisfaction. As a result, original equipment manufacturers have implemented design for variation in the design process to secure an acceptable (or within specification) response. This paper focuses on aspects of design variations that should be considered in the design process of drivelines. Variations due to imbalance and runout in rotating components can be unavoidable or costly to control.
Technical Paper

Multidisciplinary Design and Prototype Development of a Very Small Remotely-Piloted Reconnaissance Airplane

1997-10-01
975547
The multidisciplinary design optimization (MDO) methodology is employed for the design of a very small remotely-piloted airplane for a reconnaissance mission. The airplane configuration established at the conceptual design level is optimized for minimum size subject to performance, stability, weight, and dimension constraints. The constrained optimization problem is solved using the extended interior penalty function method based on finite-difference approximations of the sensitivity derivatives. The MDO-based design is validated both analytically and through the development and flight testing of a prototype airplane.
Technical Paper

Information Services to Facilitate Cyber-Physical Transportation Systems

2010-04-12
2010-01-0745
A Cyber-Physical System (CPS) facilitates the embedding of computational intelligence, communication, control, and new mechanisms for sensing and actuation into physical systems, such as the transportation infrastructure. They are a combination of computation and physical processes each affecting the outcome of the other. The wireless networked CPS sensors are envisaged to provide rapid response capabilities such as real time analysis, distributed coordination, classify events, condition based maintenance etc, to make critical decisions in networked transportation systems. To achieve the above it is required to fuse data from multiple heterogeneous sensors data. However, such ability is currently impeded by a lack of expressive and standardized syntactic and semantic models for the sensors data for proper exchange of information with the cyber and physical applications.
Technical Paper

Time Belt Dynamics and Noise Study

2010-04-12
2010-01-0902
This paper studies the dynamics and noise of timing belt. A comprehensive theoretical contact dynamics model for belt tooth-sprocket tooth pair is developed. The general belt dynamics model in conjunction with the contact model is used to quantify the impact-sliding process of belt tooth. The effect of tooth meshing process is illustrated which results in the vibrations of belt span and tooth vibrations. The structural borne noise consists of structural impact portion and friction-induced portion. The relationship between system parameters and noise is quantified. The air borne noise due to air-pumping is investigated based on Lighthill's equation. A comprehensive model is developed and the spectrum signatures of the air-pumping noise are illustrated.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

A 1200-V 600-A Silicon-Carbide Half-Bridge Power Module for Drop-In Replacement of an IGBT IPM

2010-04-12
2010-01-1251
A 1200-V, 600-A silicon carbide (SiC) JFET half-bridge module has been developed for drop-in replacement of a 600-V, 600-A IGBT intelligent power module (IPM). Advances in the development of SiC field effect transistors have resulted in reliable high yield devices that can be paralleled and packaged to produce high-voltage and high-current power modules not only competitive with existing IGBT technology but the modules have expanded capabilities. A SiC vertical junction field effect transistor VJFET has been produced with the properties of lower conduction loss, zero tail current, higher thermal conductivity, and higher power density when compared to a similarly rated silicon IGBT or any practical SiC MOSFETs previously reported. Three prototype SiC JFET half-bridge modules with gate drivers have been successfully integrated into a three-phase 30-kW (continuous), 100-kW (intermittent) AC synchronous motor drive designed to control a traction motor in an electric vehicle.
Technical Paper

Application of Kenaf-Based Natural Fiber Composites in the Automotive Industry

2011-04-12
2011-01-0215
In an effort to present more ‘green’ material for massive manufacturing that are both competitive in their properties and can be more environmental friendly, natural fibers are being considered for possible applications in the automotive industry. This paper shows an exploratory study of the effects of pressure and layup on a hybrid composite of randomly oriented woven kenaf fibers and fiberglass/polyester sheet molding compound (SMC). In addition to initial testing performed on their water absorption and other important properties, these hybrid composites were tested to determine the bending modulus of elasticity (MOE) and the bending modulus of rupture (MOR).
Technical Paper

Development of A Dynamic Modeling Framework to Predict Instantaneous Status of Towing Vehicle Systems

2017-03-28
2017-01-1588
A dynamic modeling framework was established to predict status (position, displacement, velocity, acceleration, and shape) of a towed vehicle system with different driver inputs. This framework consists of three components: (1) a state space model to decide position and velocity for the vehicle system based on Newton’s second law; (2) an angular acceleration transferring model, which leads to a hypothesis that the each towed unit follows the same path as the towing vehicle; and (3) a polygon model to draw instantaneous polygons to envelop the entire system at any time point. Input parameters of this model include initial conditions of the system, real-time locations of a reference point (e.g. front center of the towing vehicle) that can be determined from a beacon and radar system, and instantaneous accelerations of this system, which come from driver maneuvers (accelerating, braking, steering, etc.) can be read from a data acquisition system installed on the towing vehicle.
Technical Paper

Study of Noise of Accessory Belt under Cold Condition

2011-04-12
2011-01-0929
This paper presents an experimental study of automotive V-ribbed belt slip noise under cold condition. In this study, a set of experiments was conducted to investigate the properties of the belt noise and friction using a self developed rig. The belt friction under cold condition is found to have higher value than that in room condition. The belt noise under cold condition is found to have much higher squeal frequency than that in room condition. This study is expected to provide accessory drive designers some fundamental understanding of belt startup noise under cold conditions.
Technical Paper

Determination of Interior NVH Levels from Tire/Wheel Variations using a Monte Carlo Process

2011-05-17
2011-01-1580
Variability in design (e.g. tolerance), material, manufacturing, or other sources of variation causes significant variation in vehicle noise, vibration and harshness (NVH) response. This leads to a higher percentage of produced vehicles with higher levels of NVH leading to higher number of warranty claims and loss of customer satisfaction, which are proven costly to the original equipment manufacturers (OEM). Measures must be taken to insure less warranty claims and higher levels of customer satisfaction. As a result, original equipment manufacturers have implemented design for variation in the design process to secure an acceptable (or within specification) response. We will focus on some aspects of design variations in a tire/wheel assembly that should be considered in the design process. In particular, certain materials (e.g. rubber) are known to have variation in stiffness that is either unavoidable or proven costly if tighter control is desired.
Technical Paper

Mississippi State University EcoCAR 2 Final Technical Report

2013-10-14
2013-01-2489
EcoCAR 2: Plugging Into the Future is a three-year collegiate design competition challenging student teams to redesign a stock 2013 Chevrolet Malibu as a hybrid to improve its fuel economy and emissions. Mississippi State University, an eight-year veteran of AVTC competitions, has chosen to design a series-parallel plug-in hybrid electric vehicle. During the Year Two phase of the competition, the team has been implementing their design from Year One into the stock vehicle.
Technical Paper

Rough Terrain Vehicle with Synchronized Transmission-A Student Design Project

1978-02-01
780243
A Rough Terrain Vehicle has been designed, constructed and tested by Mechanical Engineering Students for the Mini-Baja 77 Races. This one seat vehicle has an eight horsepower engine, five speed transmission, independent front wheel suspension and disc brake. The gear train has been matched to the engine performance curves. A wooden mockup was used to establish the man-machine interface. The design and construction of this vehicle was the assigned problem in “Mechanical Engineering Practice”. This paper presents the design of this vehicle and then comments on the effectiveness of this project in achieving the objectives of this course.
Technical Paper

Optimized Thermal Design of Small ΔT Thermoelectric Generators

1999-08-02
1999-01-2564
The daily variation in air temperature is large compared with the temperature changes a short distance below the surface of the ground. In theory, a heat engine can be arranged to produce electricity from this temperature difference. In practice, the thermal efficiency of such a device will be low because of the small temperature differences involved. An energy harvesting device could produce sensor-scale amounts of electrical power by using a thermoelectric generator operating between the air and ground temperatures. This paper describes a proposed ground-air thermoelectric heat engine along with a procedure for the approximate optimal design of such a device. Simple design and performance equations based on thermal resistances of the thermoelectric module and coldand hot-side heat exchangers are derived and presented.
Technical Paper

Powertrain Analysis and Computational Environment (PACE) for Multi-Physics Simulations Using High Performance Computing

2016-04-05
2016-01-0308
The Powertrain Analysis and Computational Environment (PACE) is a forward-looking powertrain simulation tool that is ready for a High-Performance Computing (HPC) environment. The code, written in C++, is one actor in a comprehensive ground vehicle co-simulation architecture being developed by the CREATE-GV program. PACE provides an advanced behavioral modeling capability for the powertrain subsystem of a conventional or hybrid-electric vehicle that exploits the idea of reusable vehicle modeling that underpins the Autonomie modeling environment developed by the Argonne National Laboratory. PACE permits the user to define a powertrain in Autonomie, which requires a single desktop license for MATLAB/Simulink, and port it to a cluster computer where PACE runs with an open-source BSD-3 license so that it can be distributed to as many nodes as needed.
Technical Paper

An Innovative Engine/Generator Control Algorithm for Minimizing Battery in a Hybrid Electric Vehicle with Series Architecture of Power Train

2015-04-14
2015-01-1223
An approach is being pursued for a series hybrid electric vehicle (SHEV). The twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance has led to a SHEV powertrain using energy storage as a means for filtering drive cycle power demands on the engine, rather than an energy source for supplying all-electric mode. The concept is intended to minimize, if not eliminate, the battery in the SHEV without resorting to full range proportional control of the engine and generator. An initial optimization study reported for a mid-size SHEV showed a 4.5 kWh Li-ion battery pack was still required. In a new research, a sports car class SHEV was studied, which inspires this manuscript. The challenge with this vehicle is to reduce the ESS size even more because the available space allocation is only one fourth of the battery size in the mid-size. In this manuscript, a controller is developed that allows a hybridized SHEV to be realized with a light ESS.
Technical Paper

Development of Beam Elements for Crashworthiness Analysis of Thin-Walled Beam Structures

2016-04-05
2016-01-0401
In this paper, a new beam element is developed for the purpose of capturing thin-walled beam’s collapse mechanisms under dynamic load such as impact load and will be validated in the next phase. Such beam element can be used to create simplified finite element models for crashworthiness analysis and simulation and, therefore, will significantly reduce the modeling effort and computing time. The developed beam element will be implemented into LS-DYNA and validated through crashworthiness analysis and simulation. This paper introduces the approach of deriving the new element formulation.
Technical Paper

Improve Heat Resistance of Composite Engine Cowlings Using Ceramic Coating Materials, Experimental Design and Testing

2017-09-19
2017-01-2130
Oven and flame tests were designed and conducted to evaluate the heat resistance of a ceramic coating material, Cerakote C-7700Q, and evaluate its viability to replace the intumescent coating as one painting material for helicopter engine cowlings. The test results showed that the currently used painting scheme of the engine cowlings failed the 220°C oven test while after replacing the epoxy seal coat with the Cerakote, the new painting system passed the 220°C test in regards to painting bubbling. This study explained why serious appearance defects occurred in the inner skin of the engine cowling when the aircraft is hovering and suggested that one most time- and cost-effective solution is to repaint the current engine cowlings with a new three coating system of Cerakote, surface protection HS7072-622, and intumescent paint as a fireproof lacquer.
Technical Paper

Analysis Method for the Design of Compensated Pitot-Static Probes for Use on General Aviation Aircraft

1995-05-01
951431
Pitot-static probes are used on aircraft to measure total and static pressure, necessary for airspeed and altitude information. Aerodynamic compensation is often desired to obtain accurate freestream static pressure readings when the instrument is located near regions of disturbed flow generated by the aircraft's forebody. In this study, computational fluid dynamics (CFD) has been used to analyze surface pressures on the forebody, the probe, and on forebody/probe configurations for a transonic business jet. Compensation techniques and validation cases are presented. Results indicate that CFD can be effective in locating static pressure ports in a region of zero pressure coefficients (Cp).
Book

Road Vehicle Dynamics Problems and Solutions

2010-04-13
This workbook, a companion to the book Road Vehicle Dynamics, will enable students and professionals from a variety of disciplines to engage in problem-solving exercises based on the material covered in each chapter of that book. Emphasizing application more than theory, the workbook presents systematic rules of analysis that students can follow in a step-by-step manner to understand the efficiencies or shortcomings of various techniques. Readers will gain a greater understanding of the factors influencing ride, handling, braking, acceleration, and vehicle safety.
Book

Road Vehicle Dynamics and Problems and Solutions: Set

2010-04-28
This set combines the book Road Vehicle Dynamics with its corresponding workbook companion, Road Vehicle Dynamics: Problems and Solutions. Road Vehicle Dynamics provides a detailed overview of the dynamics of road vehicle systems, giving readers an understanding of how physical laws, human factor considerations, and design choices affect ride, handling, braking, acceleration, and vehicle safety. Chapters cover analysis of dynamic systems, tire dynamics, ride dynamics, vehicle rollover analysis, handling dynamics, braking, acceleration, total vehicle dynamics, and accident reconstruction. The workbook will enable students and professionals from a variety of disciplines to engage in problem-solving exercises based on the material covered in each chapter of that book. It presents systematic rules of analysis that students can follow in a step-by-step manner to understand the efficiencies or shortcomings of various techniques.
X