Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Force and Moment Characteristics of a Low Aspect Ratio Asymmetrically Worn Passenger Car Tire

2010-04-12
2010-01-0766
Many vehicles are equipped with independent suspension systems on the front and/or rear axle. As opposed to a DeDion or beam axle, independent suspension systems have the potential to generate camber and toe changes as the suspension strokes from full jounce to full rebound. Each vehicle suspension design presents unique camber and toe curves to the tire. To improve handling, manufacturers often set static camber on such vehicle suspension systems to nonzero values so that when cornering, the outside suspension will deflect so as to maximize cornering power and vehicle stability. Then, under straight driving conditions, the tires tend to predominantly wear their inside shoulder edges, producing the phenomenon known as camber wear.
Technical Paper

Mathematical Analysis of Tire Delamination & Rupture Failures

2017-03-28
2017-01-1509
We examine the characteristics, properties and potential idealized delamination failure modes of tires in this work. Calculations regarding tire failure stresses during tire failure scenarios, as well as during normal operation, are made. The calculations, though idealized, indicate that large chassis loads can result from the idealized failures.
Technical Paper

Simulation of Transient Maneuver Hydroplaning Events Using HVE

2014-04-01
2014-01-0122
Recent research into the phenomenon of tire hydroplaning has concentrated on the effects of possible path clearing of the rear tires by the front tires. When this occurs, the rear tire behavior and hydroplaning properties will be different from what would occur had the tire been running in an undisturbed flow field. In the present work, we modify rear tire properties to simulate the path clearing effect and utilize the SIMON/HVE suite of simulation programs with a standardized double lane change maneuver to examine path clearing potential during transient vehicle behavior.
X