Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Force and Moment Characteristics of a Low Aspect Ratio Asymmetrically Worn Passenger Car Tire

2010-04-12
2010-01-0766
Many vehicles are equipped with independent suspension systems on the front and/or rear axle. As opposed to a DeDion or beam axle, independent suspension systems have the potential to generate camber and toe changes as the suspension strokes from full jounce to full rebound. Each vehicle suspension design presents unique camber and toe curves to the tire. To improve handling, manufacturers often set static camber on such vehicle suspension systems to nonzero values so that when cornering, the outside suspension will deflect so as to maximize cornering power and vehicle stability. Then, under straight driving conditions, the tires tend to predominantly wear their inside shoulder edges, producing the phenomenon known as camber wear.
Technical Paper

Potential for Passenger Car Energy Recovery through the Use of Kinetic Energy Recovery Systems (KERS)

2013-04-08
2013-01-0407
Various mechanical and electromechanical configurations have been proposed for the recapture of vehicle kinetic energy during deceleration. For example, in Formula One racing, a KERS (Kinetic Energy Recovery System) was mandated by the FIA for each racing car during the 2011 World Championship season and beyond, and many passenger car manufacturers are examining the potential for implementation of such systems or have already done so. In this work, we examine the potential energy savings benefits available with a KERS, as well as a few design considerations. Some sample calculations are provided to illustrate the concepts.
X