Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Use of an Engine Simulation to Study Low Heat Rejection (LHR) Concepts in a Multi-Cylinder Light-Duty Diesel Engine

2016-04-05
2016-01-0668
A comprehensive analysis of engine performance and fuel consumption was carried out to study Low Heat Rejection (LHR) concepts in the conventional light-duty diesel engine. From most previous studies on LHR diesel engines, thermal-barrier coatings (TBCs) have been recognized as a conventional way of insulating engine parts; while for the cases studied in this paper, the LHR concept is realized by altering engine coolant temperature (ECT). This paper presents engine simulation of a multi-cylinder, four-stroke, 1.9L diesel engine operating at 1500 rpm with five cases having different ECTs. The simulated results have been validated against experimental data. Calibration strategy for the engine simulation model is detailed in a systematic methodology for a better understanding of this simulation-development process. The calibrated model predicts the performance and fuel consumption within tolerated uncertainties.
Technical Paper

Use of a Cycle Simulation Incorporating the Second Law of Thermodynamics: Results for Spark-Ignition Engines Using Oxygen Enriched Combustion Air

2005-04-11
2005-01-1130
An investigation on the effects of oxygen enriched combustion air on engine performance was extended to include the implications from the second law of thermodynamics. A unique feature of this investigation is the examination of equal power engines. As the oxygen content of the combustion air increases, the engine size (displacement) can decrease to achieve the same brake power. The use of oxygen enriched combustion air will have a direct affect on the combustion process and on the overall engine thermodynamics. For example, for cases with higher inlet oxygen concentration (and hence less nitrogen dilution), for the same operating conditions, the combustion gas temperatures and engine cylinder heat losses will be higher. In addition, for increasing oxygen content, the second law losses associated with mixing could be reduced. The major objective of this study was to quantify these expectations for a range of operating conditions.
X