Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Evaluation of Different Roof Strength Methods in Quasi-Static and Dynamic Rollover Tests Using Finite Element Analysis of a 2003 Ford Explorer Model

2014-04-01
2014-01-0532
Different roof strength methods are applied on the 2003 Ford Explorer finite element (FE) model to achieve the current Federal Motor Vehicle Safety Standard (FMVSS) 216 requirements. Two different modification approaches are utilized. Additionally, the best design of each approach is tested dynamically, in rollover and side impact simulations. In the first approach, several roll cage designs are integrated in all pillars, roof cross-members, and in the side roof rails. A roll cage design with a strength-to-weight ratio (SWR) of 3.58 and 3.40 for driver and passenger sides, respectively, with a weight penalty of 18.54 kg is selected for dynamic test assessments. The second approach investigates different localized reinforcements to achieve a more reasonable weight penalty. A localized reinforcement of the B-pillar alone with a tube meets the new FMVSS 216 requirements with a weight penalty of 4.52 kg and is selected for dynamic analyses.
Technical Paper

Frontal Crash Testing and Vehicle Safety Designs: A Historical Perspective Based on Crash Test Studies

2010-04-12
2010-01-1024
This study tracks vehicle design changes and frontal crash test performance in NHTSA's NCAP and IIHS consumer information tests since the mid-90s for the Honda Accord and Toyota Camry. The objective was to provide insights into how passenger cars have changed in response to frontal consumer information tests. The history of major design changes for each model was researched and documented. The occupant injury measures from both NHTSA and IIHS were computed and the ratings compiled for several generations of both vehicles. Changes in vehicle crash pulse and occupant injury measures from both NCAP and IIHS tests, and from Canadian low speed rigid barrier tests, when available, were used to assess driver frontal protection for various vehicle generations. Loading of the rigid barrier in NCAP tests was used to evaluate front end stiffness changes over the years.
X