Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Emissions Effects of Hydrogen as a Supplemental Fuel with Diesel and Biodiesel

2008-04-14
2008-01-0648
A 1.9 liter Volkswagen TDI engine has been modified to accomodate the addition of hydrogen into the intake manifold via timed port fuel injection. Engine out particulate matter and the emissions of oxides of nitrogen were investigated. Two fuels,low sulfur diesel fuel (BP50) and soy methyl ester (SME) biodiesel (B99), were tested with supplemental hydrogen fueling. Three test conditions were selected to represent a range of engine operating modes. The tests were executed at 20, 40, and 60 % rated load with a constant engine speed o 1700 RPM. At each test condition the percentage of power from hydrogen energy was varied from 0 to 40 %. This corresponds to hydrogen flow rates ranging from 7 to 85 liters per minute. Particulate matter (PM) emissions were measured using a scaning mobility particle sizer (SMPS) and a two stage micro dilution system. Oxides of nitrogen were also monitored.
Journal Article

An Aerosolization Method for Characterizing Particle Contaminants in Diesel Fuel

2013-10-14
2013-01-2668
Diesel fuel injection systems are operating at increasingly higher pressure (up to 250 MPa) with smaller clearances, making them more sensitive to diesel fuel contaminants. Most liquid particle counters have difficulty detecting particles <4 μm in diameter and are unable to distinguish between solid and semi-solid materials. The low conductivity of diesel fuel limits the use of the Coulter counter. This raises the need for a new method to characterize small (<4 μm) fuel contaminants. We propose and evaluate an aerosolization method for characterizing solid particulate matter in diesel fuel that can detect particles as small as 0.5 μm. The particle sizing and concentration performance of the method were calibrated and validated by the use of seed particles added to filtered diesel fuel. A size dependent correction method was developed to account for the preferential atomization and subsequent aerosol conditioning processes to obtain the liquid-borne particle concentration.
Technical Paper

Particle and Gaseous Emission Characteristics of a Formula SAE Race Car Engine

2009-04-20
2009-01-1400
The focus of this work was the physical characterization of exhaust aerosol from the University of Minnesota Formula SAE team's engine. This was done using two competition fuels, 100 octane race fuel and E85. Three engine conditions were evaluated: 6000 RPM 75% throttle, 8000 RPM 50% throttle, and 8000 RPM 100% throttle. Dilute emissions were characterized using a Scanning Mobility Particle Sizer (SMPS) and a Condensation Particle Counter (CPC). E85 fuel produced more power and had lower particulate matter emissions at all test conditions, but more fuel was consumed.
Technical Paper

Hydrogen as a Combustion Modifier of Ethanol in Compression Ignition Engines

2009-11-02
2009-01-2814
Ethanol, used widely as a spark-ignition (SI) engine fuel, has seen minimal success as a compression ignition (CI) engine fuel. The lack of success of ethanol in CI engines is mainly due to ethanol's very low cetane number and its poor lubricity properties. Past researchers have utilized nearly pure ethanol in a CI engine by either increasing the compression ratio which requires extensive engine modification and/or using an expensive ignition improver. The objective of this work was to demonstrate the ability of a hydrogen port fuel injection (PFI) system to facilitate the combustion of ethanol in a CI engine. Non-denatured anhydrous ethanol, mixed with a lubricity additive, was used in a variable compression ratio CI engine. Testing was conducted by varying the amount of bottled hydrogen gas injected into the intake manifold via a PFI system. The hydrogen flowrates were varied from 0 - 10 slpm.
Technical Paper

Exhaust Particle Number and Size Distributions with Conventional and Fischer-Tropsch Diesel Fuels

2002-10-21
2002-01-2727
Diesel exhaust particle number concentrations and size distributions, as well as gaseous and particulate mass emissions, were measured during steady-state tests on a US heavy-duty engine and a European passenger car engine. Two fuels were compared, namely a Fischer-Tropsch diesel fuel manufactured from natural gas, and a US D2 on-highway diesel fuel. With both engines, the Fischer-Tropsch fuel showed a considerable reduction in the number of particles formed by nucleation, when compared with the D2 fuel. At most test modes, particle number emissions were dominated by nucleation mode particles. Consequently, there were generally large reductions (up to 93%) in the total particle number emissions with the Fischer-Tropsch fuel. It is thought that the most probable cause for the reduction in nucleation mode particles is the negligible sulphur content of the Fischer-Tropsch fuel. In general, there were also reductions in all the regulated emissions with the Fischer-Tropsch fuel.
Technical Paper

Hydrogen Fueled Homogeneous Charge Compression Ignition Engine

2011-04-12
2011-01-0672
Hydrogen was used to operate a single cylinder engine in homogeneous charge compression ignition (HCCI) mode. The engine was a modified 435 cm3 single cylinder air cooled Yanmar L100V direct injection (DI) compression ignition (CI) engine. The original diesel fuel injection system was removed and a hydrogen port fuel injection (PFI) system was added, along with a 1 kW intake air heater. The piston was modified from the original re-entrant bowl piston to a dish shaped piston, while maintaining the original 21.2:1 compression ratio. The engine speed was maintained at a constant 1800 RPM. Three hydrogen fueling conditions of 25, 30, and 35 slpm were investigated, which corresponded to an excess air ratio (λ) of roughly 4.38, 3.64, and 3.16, respectively The fuel conversion efficiency for the conditions tested ranged from 23% - 27%.
Technical Paper

Cycle Efficiency and Gaseous Emissions from a Diesel Engine Assisted with Varying Proportions of Hydrogen and Carbon Monoxide (Synthesis Gas)

2011-04-12
2011-01-1194
This study investigates the combustion and emissions of a compression ignition (CI) engine operating with mixtures of hydrogen (H₂) and carbon monoxide (CO) injected with the intake air. Hydrogen and carbon monoxide were chosen as the gaseous fuels, because they represent the main fuel component of synthesis gas, which can be produced by a variety of methods and feed stocks. However, due to varying feed stock and production mechanisms, syngas composition can vary significantly. It is currently unknown how a varying H₂/CO (syngas) ratio affects the cycle efficiency and gaseous emissions. The experiments were performed on an air-cooled, naturally aspirated, direct injection diesel engine. The engine was operated at 1800 RPM with a compression ratio of 21.2:1. Two load conditions were tested; 2 bar and 4 bar net indicated mean effective pressure (IMEPⁿ). For all test conditions the added syngas demonstrated lower cycle efficiency than the diesel fuel baseline.
Technical Paper

On-Road Evaluation of an Integrated SCR and Continuously Regenerating Trap Exhaust System

2012-04-16
2012-01-1088
Four-way, integrated, diesel emission control systems that combine selective catalytic reduction for NOx control with a continuously regenerating trap to remove diesel particulate matter were evaluated under real-world, on-road conditions. Tests were conducted using a semi-tractor with an emissions year 2000, 6-cylinder, 12 L, Volvo engine rated at 287 kW at 1800 rpm and 1964 N-m. The emission control system was certified for retrofit application on-highway trucks, model years 1994 through 2002, with 4-stroke, 186-373 kW (250-500 hp) heavy-duty diesel engines without exhaust gas recirculation. The evaluations were unique because the mobile laboratory platform enabled evaluation under real-world exhaust plume dilution conditions as opposed to laboratory dilution conditions. Real-time plume measurements for NOx, particle number concentration and size distribution were made and emission control performance was evaluated on-road.
Technical Paper

Reduction of Accessory Overdrive and Parasitic Loading on a Parallel Electric Hybrid City Bus

2012-04-16
2012-01-1005
This paper reports on the first phase of a project that explores the trends and dependencies of the input power to the major mechanically-driven accessories including hydraulic pumps, air compressor, air conditioning (AC) compressor, and alternator on a modern parallel hybrid city bus. In this first phase, the impact of accessory electrification is estimated by considering the near-elimination of accessory overdrive and parasitic loading. In addition to reducing accessory fuel consumption accessory electrification can also serve as a bridge to the eventual use of a diesel or fuel cell auxiliary power unit to generate electricity for accessories on transit buses. Data collection and processing methods of this study are described, the shortcomings of mechanically-driven accessories are discussed, and an estimation of savings for accessory electrification is performed.
Technical Paper

Influence of Fuel Additives and Dilution Conditions on the Formation and Emission of Exhaust Particulate Matter from a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-2018
Experiments were performed to measure the number-weighted particle size distributions emitted from a gasoline direct injection (GDI) engine. Measurements were made on a late model vehicle equipped with a direct injection spark ignition engine. The vehicle was placed on a chassis dynamometer, which was used to load the engine to road load at five different vehicle speeds ranging from 15 - 100 km/hr. Dilution of the exhaust aerosol was carried out using a two-stage dilution system in which the first stage dilution occurs as a free jet. Particle size distributions were measured using a TSI 3934 scanning mobility particle sizer. Generally speaking, the presence of the additives did not have a strong, consistent influence on the particle emissions from this engine. The polyether amine demonstrated a reduction in particle number concentration as compared to unadditized base fuel.
Technical Paper

Effects of Fuel Properties on Particle Number and Particle Mass Emissions from Lean and Stoichiometric Gasoline Direct Injection Engine Operation

2019-04-02
2019-01-1183
Engine-out particle size distributions and soot mass emissions were measured from a gasoline direct injection (GDI) engine fueled by seven different gasoline formulations. Additionally, particle size distributions were simultaneously measured downstream of a catalyzed gasoline particulate filter (GPF) to determine the size resolved filtration efficiency. Stoichiometric, lean homogeneous, and lean stratified combustion modes were studied at four steady-state engine conditions. The particulate matter (PM) Index was calculated for each fuel as a function of the double bond equivalent and vapor pressure of the fuel components. There was generally poor correlation between particle number (PN)/PM mass emissions and the PM Index for steady state stoichiometric conditions with clean injectors, which emitted low particle concentrations.
X