Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Investigation of Diesel Fuel Lubricity and Evaluation of Bench Tests to Correlate with Medium and Heavy Duty Diesel Fuel Injection Equipment Component Wear - Part 1

2002-05-06
2002-01-1700
A study was conducted to investigate the effects of diesel fuel lubricity on diesel engine fuel injection equipment (FIE) wear and failure rates, for diesel fuels with poor to moderate lubricity characteristics, with and without lubricity additives. Five tests were used to evaluate diesel fuel lubricity characteristics: 1) a modified Falex Corporation Ball-on-Three-Disk (BOTD) lubricity test rig; 2) a high-speed Detroit Diesel Corporation (DDC) 8V71T engine test rig operated at maximum load and speed conditions under elevated fuel, coolant and ambient temperatures; 3) a Wärtsilä VASA 9R32, medium-speed, diesel engine electric power generation unit in Iqaluit, Nunavut, Canada, 4) a fuel pump rig (FPR) and 5) a high frequency reciprocating rig (HFRR).
Technical Paper

The Effect of Gasoline Composition on Vehicle Tailpipe Emissions at Low Ambient Temperature

1993-10-01
932669
The tailpipe emissions of seven 1991-92 model years vehicles were measured at two different ambient temperatures (-7, 25°C) with three different base fuels. As expected, the emissions of the first bag were most dominant over the whole FTP cycle at the lower temperature. For the whole fleet, the HC, CO and NOx, emissions at -7°C were 3.8, 4.9 and 1.2 times respectively higher compared with the emissions at 25°C, while for the first bag of the FTP cycle, they were 5.1, 6.9 and 1.3 times higher. The increase in emissions at low temperature was found to be mainly vehicle dependent. Tests performed at 25°C showed good agreement with the Auto/Oil AQlRP results regarding the HC and CO emissions but showed some difference with respect to the NOx, emissions. However, the vehicle responses to the fuels were significantly different between the two temperatures.
Technical Paper

Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT) - Part II

1997-05-01
971636
A combustion-based analytical method, initially developed by the Southwest Research Institute (SwRI) and referred to as the Constant Volume Combustion Apparatus (CVCA), has been further researched/developed by an SwRI licensee (Advanced Engine Technology Ltd.). This R&D has resulted in a diesel fuel Ignition Quality Tester (IQT) that permits rapid and precise determination of the ignition quality of middle distillate and alternative fuels. Its features, such as low fuel volume requirement, complete test automation, and self-diagnosis, make it highly suitable for commercial oil industry and research applications. A preliminary investigation, reported in SAE paper 961182, has shown that the IQT results are highly correlated to the ASTM D-613 cetane number (CN). The objective of this paper is to report on efforts to further refine the original CN model and report on improvements to the IQT fuel injection system.
Technical Paper

Effects of Fuel Properties and Source on Emissions from Five Different Heavy Duty Diesel Engines

2000-10-16
2000-01-2890
Three joint Government/Industry program have been reviewed to evaluate the effect of fuel properties and source on exhaust emissions from three post 1994 model year heavy-duty diesel engines, a single cylinder research engine and a prototype multicylinder engine designed to meet the 2004 model year oxides of nitrogen limit. The three post 1994 engines tested (at Environment Canada's facility) were a Detroit Diesel Series 50, a Caterpillar 3406E and a Cummins N14. Exhaust emissions of NOx, PM, CO, HC, and CO2 were measured using the “hot” US EPA Heavy-duty Transient Test Procedure. The single cylinder Ricardo Proteus research engine (run at the National Research Council of Canada) and the multicylinder Caterpillar 3176 prototype engine (run at the Southwest Research Institute) were tested using the AVL 8 mode test cycle. Fifteen fuels were tested in total: three “reference” Commercial Low Sulphur diesel fuels and twelve experimental fuels.
X