Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Scalable Simulation Environment for Adaptive Cruise Controller Development

2020-04-14
2020-01-1359
In the development of an Adaptive Cruise Control (ACC) system, a model-based design process uses a simulation environment with models for sensor data, sensor fusion, ACC, and vehicle dynamics. Previous work has sought to control the dynamics between two vehicles both in simulation and empirical testing environments. This paper outlines a new modular simulation framework for full model- based design integration to iteratively design ACC systems. The simulation framework uses physics-based vehicle models to test ACC systems in three ways. The first two are Model-in-the-Loop (MIL) testing, using scripted scenarios or Driver-in-the-Loop (DIL) control of a target vehicle. The third testing method uses collected test data replayed as inputs to the simulation to additionally test sensor fusion algorithms. The simulation framework uses 3D visualization of the vehicles and implements mathematical driver comfortability models to better understand the perspectives of the driver or passenger.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-10-25
2010-01-2238
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

Optimization of Natural Gas Combustion in Spark-Ignited Engines Through Manipulation of Intake-Flow Configuration

2000-06-19
2000-01-1948
An investigation was performed to try to quantify the relative importance of large-scale mixing and turbulence in a multi-valve spark-ignited automotive engine converted to use natural gas fuel. The role of mixing was examined by comparing single-point versus multi-point combustion performance at several operating conditions. The fuel-air mixture passed through a static mixer prior to entering the intake manifold in the single point case. This configuration was assumed to produce a well-mixed charge entering the combustion chamber. The fuel was delivered just upstream of the intake port in the multi-point configuration. The charge was assumed to be stratified in this case. The results showed a significant degradation in combustion stability and maximum power but little difference in ignition delay and fully-developed burn duration using multi-point injection. The relative role of turbulence was examined by altering the intake-flow configuration to create three levels of inlet swirl.
X