Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Experimental Study on Mixture Formation Process of Flat Wall Impinging Spray Injected by Micro-Hole Nozzle under Ultra-High Injection Pressures

2008-06-23
2008-01-1601
Increasing injection pressure and decreasing nozzle hole diameter have been proved to be two effective approaches to reduce the exhaust emissions and to improve the fuel economy. Recently, the micro-hole nozzles and ultra-high injection pressures are applicable in commercial Diesel engines. But the mechanism of these two latest technologies is still unclear. The current research aims at providing information on the spray and mixture formation processes of the micro-hole nozzle (d=0.08mm) under the ultra-high injection pressure (Pinj=300MPa). The flat wall impinging sprays were focused on and the laser absorption-scattering (LAS) technique was employed to obtain the qualitative and quantitative information at both atmospheric and elevated conditions. The spray parameters were collected, the mixing rate was discussed, and the effects of various parameters on mixture formation were clarified.
Technical Paper

Cross-Flow Effect on Behavior of Fuel Spray Injected by Hole-Type Nozzle for D.I. Gasoline Engine

2013-10-14
2013-01-2553
Spray characteristics are of great importance to achieve fuel economy and low emissions for a D.I. gasoline engine. In this study, the characteristics of the fuel spray as well as its interaction with a cross-flow were investigated. The fuel was injected by a VCO injector into an optically accessible rectangular wind tunnel under the normal temperature and pressure, in which the direction of the injection was perpendicular to the direction of the cross-flow. The velocity of the cross-flow varied from 0 to 10 m/s while the injection pressure was 5 and 10 MPa. With using the high speed video camera and the PIV system, the spray profile, velocity distribution and the penetration distance were measured. The lower penetration distance can be obtained with the lower injection pressure and the increased velocity of the cross-flow, however the injected fuel expands along the direction of the cross-flow, which indicates that spray atomization and mixing of fuel and air are enhanced.
Technical Paper

Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure at Similar Injection Rate Condition

2020-11-30
2020-32-2313
The fuel economy of recent small size DI diesel engines has become more and more efficient. However, heat loss is still one of the major factors contributing to a substantial amount of energy loss in engines. In order to a full understanding of the heat loss mechanism from combustion gas to cylinder wall, the effect of hole size and rail pressure at similar injection rate condition on transient heat flux to the wall were investigated. Using a constant volume vessel with a fixed impingement wall, the study measured the surface heat flux of the wall at the locations of spray flame impingement using three thin-film thermocouple heat-flux sensors. The results showed that the transferred heat was similar under similar injection rate profiles. However, in case of flame luminosity, temperature distribution, characteristic of local heat flux and soot distribution was also similar except the smaller nozzle hole size with higher injection pressure.
X