Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Neck Biomechanical Responses with Active Head Restraints: Rear Barrier Tests with BioRID and Sled Tests with Hybrid III

2002-03-04
2002-01-0030
Active head restraints are being used to reduce the risk of whiplash in rear crashes. However, their evaluation in laboratory tests can vary depending on the injury criteria and test dummy. The objective of this study was to conduct barrier tests with BioRID and sled tests with Hybrid III to determine the most meaningful responses related to whiplash risks in real-world crashes. This study involved: (1) twenty-four rear barrier tests of the Saab 9000, 900, 9-3 and 9-5 with two fully instrumented BioRID dummies placed in the front or rear seats and exposed to 24 and 48.3 km/h barrier impacts, and (2) twenty rear sled tests at 5-38 km/h delta V in three series with conventional, modified and SAHR seats using the Hybrid III dummy. A new target superposition method was used to track head displacement and rotation with respect to T1. Insurance data on whiplash claims was compared to the dummy responses.
Technical Paper

Effectiveness of High-Retention Seats in Preventing Fatality: Initial Results and Trends

2003-03-03
2003-01-1351
In 1995, new seat specifications were adopted by GM to provide high retention and improve occupant safety in rear crashes. With more than five years of phase-in of high retention (HR) seats, an analysis of FARS was undertaken to determine the initial field performance of HR seats in preventing fatalities. The 1991-2000 FARS was sorted for fatal rear-impacted vehicles. Using a VIN decoder, GM vehicles with HR front seats were sorted from those with baseline (pre-HR) seats. The fatal rear-impacted vehicle crashes were subdivided into several groups for analysis: 1) single-vehicle rear impacts, 2) two-vehicle rear crashes involving light striking vehicles, and 3) two-vehicle crashes involving heavy trucks and tractor-trailers, and multi-vehicle (3+) rear crashes.
Technical Paper

Research Issues on the Biomechanics of Seating Discomfort: An Overview with Focus on Issues of the Elderly and Low-Back Pain

1992-02-01
920130
This paper reviews issues relating to seats including design for comfort and restraint, mechanics of discomfort and irritability, older occupants, and low-back pain. It focuses on the interface between seating technology and occupant comfort, and involves a technical review of medical-engineering information. The dramatic increase in the number of features currently available on seats outreaches the technical understanding of occupant accommodation and ride comfort. Thus, the current understanding of seat design parameters may not adequately encompass occupant needs. The review has found many pathways between seating features and riding comfort, each of which requires more specific information on the biomechanics of discomfort by pressure distribution, body support, ride vibration, material breathability, and other factors. These inputs stimulate mechanisms of discomfort that need to be quantified in terms of mechanical requirements for seat design and function.
Technical Paper

Rear Impact Tests of Starcraft-Type Seats with Out-of-Position and In-Position Dummies

2011-04-12
2011-01-0272
Objective: This study analyzed available rear impact sled tests with Starcraft-type seats that use a diagonal belt behind the seatback. The study focused on neck responses for out-of-position (OOP) and in-position seated dummies. Methods: Thirteen rear sled tests were identified with out-of-position and in-position 5 th , 50 th and 95 th Hybrid III dummies in up to 47.6 mph rear delta Vs involving Starcraft-type seats. The tests were conducted at Ford, Exponent and CSE. Seven KARCO rear sled tests were found with in-position 5 th and 50 th Hybrid III dummies in 21.1-29.5 mph rear delta Vs involving Starcraft-type seats. In all of the in-position and one of the out-of-position series, comparable tests were run with production seats. Biomechanical responses of the dummies and test videos were analyzed.
Technical Paper

Fracture-Dislocation of the Thoracic Spine in Extension by Upright Seats in Severe Rear Crashes

2011-04-12
2011-01-0274
Purpose: This study presents cases of fracture-dislocation of the thoracic spine in extension during severe rear impacts. The mechanism of injury was investigated. Methods: Four crashes were investigated where a lap-shoulder-belted, front-seat occupant experienced fracture-dislocation of the thoracic spine and paraplegia in a severe rear impact. Police, investigator and medical records were reviewed, the vehicle was inspected and the seat detrimmed. Vehicle dynamics, occupant kinematics and injury mechanisms were determined in this case study. Results: Each case involved a lap-shoulder-belted occupant in a high retention seat with ≻1,700 Nm moment or ≻5.5 kN strength for rearward loading. The crashes were offset rear impacts with 40-56 km/h delta V involving under-ride or override by the impacting vehicle and yaw of the struck vehicle. In each case, the occupant's pelvis was restrained on the seat by the open perimeter frame of the seatback and lap belt.
Technical Paper

Effect of Occupant Weight and Initial Position in Low-to-High Speed Rear Sled Tests with Older and Modern Seats

2021-04-06
2021-01-0918
The average body weight of the US population has increased over time. This study investigates the effect of increasing weight on seat and occupant responses in 15-18 km/h and 42 km/h rear sled tests. The effect of initial occupant posture is also discussed. Seven tests were conducted with lap-shoulder belted ATDs (anthropometric test device) placed on older and modern driver seats. Four tests were conducted with a 50th percentile male Hybrid III, two with 95th percentile male Hybrid III and one with a BioRID. The ATDs were ballasted to represent a Class I or II obese occupant in three tests. The tests were matched by seat model and sled velocity. The effect of occupant weight was assessed in three matches. The results indicated an increase in seatback deflection with increasing occupant weight.
Technical Paper

Influence of Seatback Angle on Occupant Dynamics in Simulated Rear-End Impacts

1992-11-01
922521
In the early 1980's a series of tests was conducted simulating rear-end crashes. The tests demonstrated that a conventional automotive bucket seat adequately retains an unbelted dummy on the seat for rear-end impacts up to 6.4 m/s and 9.5 g severity. For this severity of impact the total rearward rotation of the seatback is less than 60° from the vertical and is associated with a normal acceleration of the dummy's chest into the seatback of up to 10 g. The tangential acceleration of the dummy, which may induce riding up the seat, was generally less than the normal component so that the occupant was prevented from sliding up the deflected seatback. The bucket seat provided adequate containment and control of occupant displacements for each of the initial seatback angles of 9°, 22°, and 35°.
Technical Paper

Restraint of a Belted or Unbelted Occupant by the Seat in Rear-End Impacts

1992-11-01
922522
This sled test series involved occupant loading of the seat in rear crashes of 4.3-8.3 m/s (9.6-18.5 mph). The tests were conducted in the early 1980s and involved an unbelted or lap-shoulder belted Part 572 dummy in rear and oblique rear impacts. The research is reported today to provide comparative data for the record and serves as a control benchmark for more current technologies and safety research methodologies on seat performance in rear crashes. Safety belts improved occupant retention on the seat primarily by the lap belt reducing the upward and rearward movement of the pelvis. Tests were also conducted on the mechanisms for energy absorption by seatback deflection.
Technical Paper

High Retention Seat Performance in Quasistatic Seat Tests

2003-03-03
2003-01-0173
A new generation of seats has been designed to specifications for high retention (HR) in a Quasistatic Seat Test (QST). The QST involves occupant loading of the seat in a rearward direction and targets peak H-point moment to >1700 Nm giving an energy transfer capability of 2000 J. QST tests from 1998-2000 were compared to results from pre-HR seat designs of the late 1980s and early 1990s to determine performance improvements. Twenty-seven QST tests of HR seats were randomly selected from a larger series and were evaluated for strength and seat deformation under occupant loading. They represented 20 different seat types from four suppliers. Averages and standard deviations in QST results were computed. In addition, eight repeat tests were conducted with one seat to determine repeatability of the QST. These data were compared to an earlier repeatability study of the 1994 W pre-HR seat, which was evaluated at two facilities.
Technical Paper

Energy Transfer to an Occupant in Rear Crashes: Effect of Stiff and Yielding Seats

2003-03-03
2003-01-0180
For several decades, there has been a debate on the safety merits of yielding and rigidized (stiff) seats. In 1995, GM adopted requirements for high retention seats and introduced a new generation of yielding seatbacks. These seats have the same stiffness as the yielding seats of the 1980s and early 1990s, but have a strong frame structure and recliners to substantially limit seatback rotation in severe rear crashes. The yielding behavior is given by compliance of the seat suspension across the side structures and an open perimeter frame, which allows the occupant to penetrate into the seatback. The purpose of this study is to compare the energy transfer characteristics and occupant dynamics of yielding and stiff seats in 35 km/h and 16 km/h rear crashes. Based on benchmarking tests, the stiff seatback is defined as one having a 40 kN/m stiffness in rearward loading by a Hybrid dummy.
Technical Paper

Theories, Facts and Issues About Recliner and Track Release of Front Seats in Rear Impacts

2018-04-03
2018-01-1329
Objective: This study involved a number of different tests addressing theories for recliner and track release of front seats in rear impacts. It addresses the validity of the theories. Method: Several separate test series were conducted to address claims made about recliner and track release of front seats in rear impacts. The following theories were evaluated to see the validity of the issues: 1 Recliner teeth slipping with minimal damage to the teeth 2 Recliner teeth bypass by disengaging and re-engaging under load without damaging the teeth 3 Recliner shaft bending and torque releasing the recliners 4 Track release by heel loading 5 Track release with occupant load on the seat 6 Recliner handle rotation causing recliner release 7 Double pull body block tests Results: Many of the theories were found to be uncorroborated once actual test data was available to judge the merits of the issue raised. The laboratory tests were set-up to specifically address particular issues.
Technical Paper

Seat Performance and Occupant Moving Out of the Shoulder Belt in ABTS (All-Belts-to-Seat) in Rear Impacts

2019-04-02
2019-01-1031
This study examined occupant and seat responses with ABTS (all-belts-to-seat) in rear end collisions. Some have claimed improved ABTS seat performance and retention in rear impacts than conventional seats. ABTS seats tend to have higher ultimate yield strengths than conventional yielding seats. Most ABTS seats have asymmetric seatback stiffness due to the need for additional structure on one side of the seat to support shoulder belt loads. Many designs use a single-side recliner and single stanchion that anchors the D-ring. This asymmetry results in twisting of the seatback in severe rear impacts. Seatback twist can allow the occupant to move away from the shoulder belt. Rearward pull tests on ABTS seats also demonstrates seatback twisting and in some cases large drops in load during the test. The added strength and stiffness of ABTS seats lead to designs that are vulnerable to sudden force drops from separated parts.
Journal Article

Front Seat Performance in Rear Impacts: Effect on 1st and 2nd Row Occupant Injury

2009-04-20
2009-01-0252
Purpose: This study analyzes the effect of front seat performance on occupant injury in rear crashes where there is a 2nd row passenger seated behind the front occupant. Methods: The study was carried out for rear impact crashes in the 1991–2006 NASS-CDS. Only cases where there was a 2nd row occupant seated behind an occupied front seat were chosen. Serious injury (MAIS 3+F) was determined for the front and 2nd row occupants. The performance of the front seat was determined using eight NASS-CDS investigator categories, including no failure, seat failure of the adjuster, seatback or track-anchor and seat deformation by the occupant or intrusion. The rear crashes were subdivided into four severities (<15, 15–25, 25–45 and >45 mph). The risk for serious injury was determined for each category of seat performance. Next, individual cases were reviewed from the online NASS electronic files to better understand the determination of seat performance by the NASS-CDS investigators.
Technical Paper

FRED II Quasistatic Seat Testing Rearward: An Improved Method Based on the SAE H-point Manikin

2019-04-02
2019-01-1032
Various methods have been used to load a seat in the rear direction, including FMVSS 207, assorted body blocks and QST (quasistatic seat test). However, each method lacks some critical aspect of occupant loading of the seat or is too complex for routine development work. A new method is presented to determine the strength and energy transfer of a seat to an occupant in rear impacts that reflects how an occupant interacts with the seat in a rear impact. A metal-cast H-point manikin, called FRED II, was modified to support a loading bar and was pulled rearward into the seatback by a hydraulic ram. The force and displacement of the loading and the inboard and outboard seatback angle were measured. The response of the seat was recorded by video. The moment about the recliner pivot at peak force was determined by aligning the center of the recliner in side views of the seat position initially and at peak load.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
Technical Paper

Update on Second-Row Children Responses in Rear and Frontal Crashes with a Focus on the Potential Effect of Stiffening Front Seat Structures

2020-04-14
2020-01-1215
NHTSA has recently been petitioned to address the protection of second-row children in rear crashes due front seatback performance. The protection of children is important. However, it is more complex than assessing front seat performance in rear impacts. Viano, Parenteau (2008 [1]) analyzed cases of serious-to-fatally injured (MAIS 3+F) children up to 7 years old in the second row in rear impacts involving 1990+ model year vehicles using 1997-2005 NASS-CDS. They observed that intrusion was an important factor pushing the child forward into the back of the front seat, B-pillar or other front structure. To help assess whether stiffening the front seats would be beneficial for second-row child safety, the 2008 study was updated using more recent data and model year vehicles. In the present study, 1997-2015 NASS-CDS data were analyzed for serious-to-fatally (MAIS 3+F) injured 0- to 7-year old children in the second row with 1994+ model year vehicles.
Technical Paper

Fatalities of Second-Row Children in Front, Side and Rear Impacts by Calendar Year (CY) and Model Year (MY)

2022-03-29
2022-01-0860
Field data was analyzed on second-row children in front, side and rear impacts to study fatality trends by model year (MY) and calendar year (CY) with 1980-2020 MY vehicles. The different MY and CY perspectives show changes in rates that are useful for setting priorities for second-row child safety in rear impacts. 1990 to 2019 FARS was queried to assess the number of fatally injured and non-ejected second-row children (0-15 years old) in crashes without fires. The children included outboard occupants seated behind an occupied front seat and center occupants. The data was analyzed for rear, front and side impacts to assess crash frequency. 1990-2015 POLK was queried to assess exposure of registered vehicles and estimate a fatality rate. The FARS and POLK data were sub-grouped by MY of the vehicle and CY of the crash. There were 2.8-times more fatally injured children in frontal crashes than in the rear crashes. The ratio of frontal and rear crashes varied with CY sub-groups.
X