Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A Urea Decomposition Modeling Framework for SCR Systems

2009-04-20
2009-01-1269
Selective catalytic reduction (SCR) is allowing diesel engines to reach NOx emission levels which are unachievable in-cylinder. This technology is still evolving, and new catalyst formulations which provide higher performance and greater durability continue to be developed. Usually, their performance is measured on a flow reactor using ammonia as the reductant. However, in mobile applications a urea-water solution is used instead, and urea decomposition by thermolysis and hydrolysis provides the required ammonia to the catalyst. It is well known that urea decomposition is incomplete by the inlet face of the converter, and this is at least one reason why on-engine performance is generally lower than would be expected from reactor tests. Previous modeling of urea-water droplets has focused on developing detailed sub-models that can be implemented into computational fluid dynamics (CFD) codes.
Journal Article

Mixture Non-Uniformity in SCR Systems: Modeling and Uniformity Index Requirements for Steady-State and Transient Operation

2010-04-12
2010-01-0883
Selective catalytic reduction (SCR) of NOx is coming into worldwide use for automotive diesel emissions control. To meet the most stringent standards, NOx conversion efficiency must exceed 80% while NH3 emissions or slip must be kept below 10-30 ppm. At such high levels of performance, non-uniformities in ammonia-to-NOx ratio (ANR) at the converter inlet can limit the achievable NOx reduction. Despite its significance, this effect is frequently ignored in 1D catalyst models. The corresponding model error is important to system integration engineers because it affects system sizing, and to control engineers because it affects both steady-state and dynamic SCR converter performance. A probability distribution function (PDF) based method is introduced to include mixture non-uniformity in a 1D, real-time catalyst model.
Journal Article

Model Predictive Control: A Unified Approach for Urea-Based SCR Systems

2010-04-12
2010-01-1184
Despite the fact that urea-based selective catalytic reduction (SCR) of NOx is a key technology for achieving on- and off-highway diesel emission standards, significant control challenges remain. Transient operation, combined with dramatic changes in catalyst dynamics over the operating range, cause highly nonlinear system behavior. Moreover, these effects depend on catalyst formulation and new catalysts continue to be developed. With many controllers, any difference in catalyst formulation, converter size, and engine emissions calibration require control system re-tuning. To minimize control development effort, this paper presents a novel “generic” controller for SCR systems. Control action is grounded in a physics-based, nonlinear, embedded model. Through the model, controller parameters are adjusted a priori for catalyst formulation and converter size. The few remaining tuning levers are quite intuitive, and require no special knowledge of controls theory.
X