Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Development of a Brake Insulator Damping Measurement Procedure

2010-10-10
2010-01-1685
The development and validation of a brake pad insulator damping measurement procedure by the SAE Brake NVH Standards Committee is described in this paper. The details of the test procedure, test set-up and recommendations for proper test practices are described. The description provides an excellent foundation for evaluating the damping properties of a shim over a range of frequencies and temperatures. To document the repeatability of the measurement process, a Gage R&R study was conducted. The results show that a high level of repeatability is achieved over a range of temperatures and damping properties. An example application is described to illustrate the usage of the procedure. This example provides an excellent illustration of how this procedure can be used to select the best shim for a specific application. Conclusions as to the applicability of this procedure and its value to brake noise control are provided in the final section.
Book

Brake NVH: Testing and Measurements

2011-03-29
As other vehicle systems have become more refined, more attention must be placed on brake NVH issues because they can cause a negative customer experience. From the laboratory to the road, the use of technology as well as further study by engineers is helping to lessen noise, judder, and vibration in cars. This book provides readers with a fundamental understanding of current practices for measuring and testing brake NVH. From coverage of basic definitions and concepts to in-depth analysis of on-road testing procedures, it will serve as a comprehensive reference guide for brake test technicians, test engineers, lab managers, and others who work on making brakes quieter, smoother, more refined, and more reliable. Readers will learn how to test for brake noise, what tools to use, and which recent standards and practices have led to the successful measurement of brake noise and vibration.
X