Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Heavy Vehicle Suspension Frame Durability Analysis Using Virtual Proving Ground

2005-11-01
2005-01-3609
Virtual proving ground (VPG) simulations have been popular with passenger vehicles. VPG uses LS-DYNA based non-linear contact Finite Element analysis (FEA) to estimate fully analytical road loads and to predict structural components durability with PG road surfaces and tire represented as Finite elements. Heavy vehicle industry has not used these tools extensively in the past due to the complexity of heavy vehicle systems and especially due to the higher number of tires in the vehicle compared to the passenger car. The higher number tires in the heavy vehicle requires more computational analysis duration compared to the passenger car. However due to the recent advancements in computer hardware, virtual proving ground simulations can be used for heavy vehicles. In this study we have used virtual proving ground based simulation studies to predict the durability performance of a trailer suspension frame.
Technical Paper

Solver Embedded Fatigue

2014-04-01
2014-01-0904
This paper presents a fundamental conceptual change to the traditional CAE based fatigue analysis process. Traditional approaches take the responses from a stress solver and these are then transferred into a secondary fatigue analysis step. In this way fatigue is, and always has been, treated as a post processing step. The new conceptual change described in this paper involves combining the two separate tasks into one (stress and fatigue together). This results in a simple, elegant and more powerful Durability Management concept. This new process requires no large data files to be transferred, no complicated file management and it is likely that whole fatigue calculation process can be done in memory. This makes it possible to perform optimization with fatigue life as the constraint. It also facilitates full body fatigue life calculations, including dynamic behavior, for much larger models than was previously possible.
X