Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Investigation of Rear Occupant Head Restraint Interaction in High-Severity Rear Impact using BioRID and HIII

2011-04-12
2011-01-0273
The rear seat occupant has been the subject of an increasing number of research efforts in recent years. However, the majority of the research has focused on frontal impact, while there are also a number of studies concerned with low to moderate delta-V rear impact. Very limited work exists regarding the fate of the rear seat occupant involved in high-severity rear impact, especially when utilizing the BioRID anthropomorphic test device (ATD). Furthermore, it is evident that the out of position rear occupant, as defined by leaning forward prior to rear impact, is also of relevance to this line of research. The objective of this study is to explore and compare the response of BioRID and 50 th percentile Hybrid III in conjunction with the effects of head restraint geometry and the occupant seating configuration (normal seating versus forward leaning) in high-severity rear impact tests.
Journal Article

Evaluating Impact Attenuator Performance for a Formula SAE Vehicle

2011-04-12
2011-01-1106
Formula SAE® is one of several student design competitions organized by SAE International. In the Formula SAE events undergraduate and graduate students are required to conceive, design, fabricate and compete with a small, formula-style, race car. Formula SAE safety rules dictate a 7 m/s (or approximately 15.65 mph) frontal crash test for nose-mounted impact attenuators. These rules are outlined in section B3.21 of the Formula SAE rule book. Development and testing methods of these energy-absorbing devices have varied widely among teams. This paper uses real-world crash sled results to research methods for predicting the performance of aluminum honeycomb impact attenuators that will comply with the Formula SAE standards. However, the resulting models used to predict attenuator performance may also have a variety of useful applications outside of Formula SAE. In this paper, various energy absorbers were mounted to a free rolling trolley sitting on top of a crash sled.
Technical Paper

Child Restraint Systems: Top Tether Effectiveness in Side Impact Collisions

2013-04-08
2013-01-0601
Use of the top tether attachment in three commonly available anchor points provides added restraint of child restraint systems (CRS). Three tether attachment positions were used; floor, behind the head rest (parcel deck) and at the ceiling. The three anchor points are comparable in efficacy while no tether allows increased travel of the anthropomorphic test device (ATD) head. Two series of six tests were conducted at a max speed of 20 mph and peak deceleration of 16 G's using a deceleration sled test apparatus. The first series of tests was conducted at a 90 degree impact angle. On average there is 9% less head travel when using the tether attachment compared to not using the tether attachment, all other conditions begin equal. The second series of tests was conducted at a 73 degree impact angle, there is 15% less head travel when using the tether attachment compared to not using the tether attachment, all other conditions begin equal.
Technical Paper

Side Impact Testing of the Near-Side, Rear Seat Occupant Using a Deceleration Sled

2014-04-01
2014-01-0547
A near-side, rear seat side impact component test, was conducted and validated utilizing a SIDIIs anthropomorphic test device (ATD). The test fixture consisted of the rear seat structure, side door, interior trim, and side airbag curtain module. Test parameters were determined from full scale tests including impact speed, angle of impact, and depth of door intrusion. A comparative assessment was conducted between the full scale test and the deceleration sled test including ATD contact with the vehicle interior, contact duration, sequential timing of ATD contact, and dummy injury measures. Validation was achieved so that the deceleration sled test procedure could be utilized for further evaluations.
Technical Paper

Effect of Seat Belts Equipped with Pretensioners on Rear Seat Adult Occupants in High-Severity Rear Impact

2008-01-14
2008-01-1488
This study provides a preliminary investigation of occupant kinematics for rear seat occupants involved in high-severity rear impacts. The effect of a seatbelts equipped with or without a pyrotechnic pretensioner on restraining the rear seat adult occupant was evaluated. Further, the study examined the result of the occupant's seating alignment by comparing a Nominal Seating Position (NSP) to an occupant whose torso would be rotated forward to be placed in a Moderately Displaced Position (MDP) prior to impact. A series of eight sled tests were performed using a deceleration sled subjected to a delta-V of 30 mph. Instrumented HIII 50th and 5th ATDs were positioned in the outboard, rear seating positions. The study found that pretensioners had little effect on the occupant kinematics of rear seat occupants in either the NSP or the MDP. But, there were marked differences in kinematic evaluations between the occupant seating alignment configurations.
X