Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Investigation of Controlling Two-Peak Heat Release Rate for Combustion Noise Reduction in Split-Injection PCCI Engine using Numerical Calculation

2014-11-11
2014-32-0132
A combustion method called Noise Canceling Spike (NC-Spike) Combustion [1, 2] has been reported in the co-author's previous paper, which reduces combustion noise in PCCI with split injection. This NC-Spike Combustion uses interference of the following “spike” of pressure rise on the preceding peak of pressure rise. The overall combustion noise is reduced by lowering the maximum frequency component of the noise spectrum. The period of this frequency is two times of the time interval between the two peaks of the pressure rise rate. This maximum load range of conventional PCCI combustion is limited by the combustion noise, since the maximum pressure rise rate increases as the amount of injected fuel increases. The NC-Spike Combustion has a potential to extend of the operating range of PCCI combustion.
Technical Paper

Numerical Assessment of Controlling the Interval between Two Heat-Release Peaks for Noise Reduction in Split-injection PCCI Combustion

2015-09-01
2015-01-1851
In PCCI combustion with multiple injections, the mechanism having two heat release peaks which has a favorable characteristic of reducing noise is studied using numerical tool of single- and also multi-zone model of CHEMKIN PRO. In the present investigation, the physical issues, such as variations in the equivalent ratio and temperature caused by the fuel injection are simplified first so that the key issues of chemical reaction occurred in the combustion chamber can be extracted and are discussed in detail. The results show that the interval of two heat-release peaks can be controlled and as the number of zones of the calculation increases, the change in the timing of a heat release peak is increased but over three-zones, it is not affected any more. This indicates that to study about complex diesel combustion phenomena, three-to four-zone model shall give sufficiently accurate results.
X