Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

The Effect of Exhaust Throttling on HCCI - Alternative Way to Control EGR and In-Cylinder Flow

2008-06-23
2008-01-1739
Homogeneous Charge Compression Ignition (HCCI) has emerged as a promising technology for reduction of exhaust emissions and improvement of fuel economy of internal combustion engines. There are generally two proposed methods of realizing the HCCI operation. The first is through the control of gas temperature in the cylinder and the second is through the control of chemical reactivity of the fuel and air mixture. EGR trapping, i.e., recycling a large quantity of hot burned gases by using special valve-train events (e.g. negative valve overlap), seems to be practical for many engine configurations and can be combined with any of the other HCCI enabling technologies. While this method has been widely researched, it is understood that the operating window of the HCCI engine with negative valve overlap is constrained, and the upper and lower load boundaries are greatly affected by the in-cylinder temperature.
Technical Paper

A Study of Quantitative Impact on Emissions of High Proportion RME-Based Biodiesel Blends

2007-01-23
2007-01-0072
Previous work of the authors' group has shown that biodiesel fuels as a replacement for conventional diesel fuel in engine combustion can reduce PM level dramatically while lowering some other regulated emissions as well. It has shown that these fuels have the potential to increase the overall engine performance due to their lower sulphur and/or aromatics content compared with standard diesel fuels. This paper presents a study on a single cylinder naturally aspirated direct injection (DI) diesel engine, equipped with a pump-line-nozzle injection system, operating with varied biodiesel fuel blends (0%, 25%, and 50% of RME by volume) with ultra low sulphur diesel fuel (ULSD). The detailed analysis of the measurement data shows that the ignition delay and exhaust emissions are affected by the proportion of biodiesel due to the effect of different physical and chemical properties of the two fuels.
Technical Paper

Effect of Intake Valves Timings on In-Cylinder Charge Characteristics in a DI Engine Cylinder with Negative Valve Overlapping

2008-04-14
2008-01-1347
This paper presents a computational investigation of the in-cylinder charge characteristics within a motored 4-valve direct injection HCCI engine cylinder with applied negative valve overlapping. Non-typical intake valve strategy was investigated; whereby the pair of intake valves was assumed to follow the same low-lift short-duration valve-lift profile but actuated at different timings. The phase of intake-valve-opening relative to that of exhaust-valve-closing was optimized in terms of pumping losses. The flow fields generated with such an intake valve strategy were compared to those produced in the same engine cylinder but with typical early and late intake-valve-timing. The computational results of such an approach showed modifications in the in-cylinder swirl and tumble motions during the intake and compression strokes.
Technical Paper

CFD Analysis of Air Intake System with Negative Pressure on Intake Grill

2008-06-23
2008-01-1643
The objective of the current research was to predict and analyze the flow through the grill of air intake system which is positioned behind the front wheel arch of vehicle. Most of the vehicle used today locates the grill of air intake at the front side so to acquire benefit of ram effect. In some cases, however, the grill is located behind the vehicle to improve wading performance. The geometry of air intake system of Land Rover Freelander was used in the modelling approach. The study was focused on different flow speeds on the grill at high load operation where the air speed at the grill side is high and creates negative pressure. The CFD results are validated against experimental data of steady flow test bench.
X