Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hydrogen Rich Gas Production in a Diesel Partial Oxidation Reactor with HC Speciation

2009-04-20
2009-01-0276
In the present work, the partial oxidation of diesel (US07), rapeseed methyl ester (RME) and low temperature Fischer - Tropsch synthetic diesel (SD), almost 100% paraffinic, was investigated for the purpose of hydrogen and intermediate hydrocarbon species production over a prototype reforming catalyst, for the potential use in hydrocarbon selective catalytic reduction (HC-SCR) of nitrogen oxide (NOx) emissions from diesel engines. The presence of small amounts of hydrogen can substantially improve the effectiveness of hydrocarbons in the selective reduction of NOx over lean NOx catalysts, particularly at low temperatures (150-350°C). In this study, the partial oxidation reactor was operating at the same input power (kW), based on the calorific values of the fed fuel. Hydrogen production was as high as 19%, from the partial oxidation of SD fuel, and dropped to 17% and 14% for RME and US07 diesel, respectively.
Technical Paper

Activity of Prototype Catalysts on Exhaust Emissions from Biodiesel Fuelled Engines

2008-10-06
2008-01-2514
A prototype catalyst has been developed and integrated within the aftertreatment exhaust system to control the HC, CO, PM and NOx emissions from diesel exhaust gas. The catalyst activity in removing HC and nano-particles was examined with exhaust gas from a diesel engine operating on biodiesel - Rapeseed Methyl Ester (RME). The tests were carried out at steady-state conditions for short periods of time, thus catalyst tolerance to sulphur was not examined. The prototype catalyst reduced the amount of hydrocarbons (HC) and the total PM. The quantity of particulate with electrical mobility diameter in nucleation mode size < 10nm, was significantly reduced over the catalyst. Moreover, it was observed that the use of EGR (20% vol.) for the biodiesel fuelled engine significantly increases the particle concentration in the accumulation mode with simultaneous reduction in the particle concentration in the nuclei mode.
X