Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Study of Quantitative Impact on Emissions of High Proportion RME-Based Biodiesel Blends

2007-01-23
2007-01-0072
Previous work of the authors' group has shown that biodiesel fuels as a replacement for conventional diesel fuel in engine combustion can reduce PM level dramatically while lowering some other regulated emissions as well. It has shown that these fuels have the potential to increase the overall engine performance due to their lower sulphur and/or aromatics content compared with standard diesel fuels. This paper presents a study on a single cylinder naturally aspirated direct injection (DI) diesel engine, equipped with a pump-line-nozzle injection system, operating with varied biodiesel fuel blends (0%, 25%, and 50% of RME by volume) with ultra low sulphur diesel fuel (ULSD). The detailed analysis of the measurement data shows that the ignition delay and exhaust emissions are affected by the proportion of biodiesel due to the effect of different physical and chemical properties of the two fuels.
Technical Paper

Particulate Emissions from a Common Rail Fuel Injection Diesel Engine with RME-based Biodiesel Blended Fuelling Using Thermo-gravimetric Analysis

2008-04-14
2008-01-0074
Increasing biodiesel content in mineral diesel is being promoted considerably for road transportation in Europe. With positive benefits in terms of net CO2 emissions, biofuels with compatible properties to those of conventional diesel are increasingly being used in combustion engines. In comparison to standard diesel fuel, the near zero sulphur content and low levels of aromatic compounds in biodiesel fuel can have a profound effect not only on combustion characteristics but on engine-out emissions as well. This paper presents analysis of particulate matter (PM) emissions from a turbo-charged, common rail direct injection (DI) V6 Jaguar engine operating with an RME (rapeseed methyl ester) biodiesel blended with ultra low sulphur diesel (ULSD) fuel (B30 - 30% of RME by volume). Three different engine load and speed conditions were selected for the test and no modifications were made to the engine hardware or engine management system (EMS) calibration.
Technical Paper

Performance, Emissions and Exhaust-Gas Reforming of an Emulsified Fuel: A Comparative Study with Conventional Diesel Fuel

2009-06-15
2009-01-1809
The fuel reforming technology has been extensively investigated as a way to produce hydrogen on-board a vehicle that can be utilized in internal combustion engines, fuel cells and aftertreatment technologies. Maximization of H2 production in the reforming process can be achieved when there is optimized water (steam) addition for the different reforming temperatures. A way to increase the already available water quantity on-board a vehicle (i.e. exhaust gas water content) is by using emulsified fuel (e.g. water-diesel blend). This study presents the effect of an emulsified diesel fuel (a blend of water and diesel fuel with an organic surfactant to make the mixture stable) on combustion in conjunction with exhaust gas assisted fuel reforming on a compression ignition engine. No engine modification was required to carry out these tests. The emulsified diesel fuel consisted of about 80% (mass basis) of conventional ultra low sulphur diesel (ULSD) fuel and fixed water content.
Technical Paper

Promotive Effect of Diesel Fuel on Gasoline HCCI Engine Operated with Negative Valve Overlap (NVO)

2006-04-03
2006-01-0633
It is well-known that gasoline is a poor fuel for HCCI operation due to its high autoignation temperature, while the major problem for diesel HCCI is that the ignition temperature of diesel fuel is too low so that diesel autoignites too early. Interestingly a blend of gasoline and diesel fuel could have desirable characteristics for HCCI operation. The negative valve overlap (NVO) is a practical and feasible control mode for production applications of the HCCI concept. At present, the most serious problem is the difficulty to control the moment of auto-ignition and extend the limited operating window of smooth HCCI operation. In this paper, the promotive effects of diesel fuel on gasoline HCCI combustion were experimentally examined. The diesel fuel as additive was added in advance in different proportion (10% and 20% by mass) into gasoline for the purpose of improving its ignitability. The experiments conducted on a gasoline HCCI engine which was naturally aspirated and unthrottled.
X