Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Energy Efficiency Analysis of Monolith and Pellet Emission Control Systems in Unidirectional and Reverse-Flow Designs

2009-09-13
2009-24-0155
The work aims at analysing the energetic performances of monolith and pellet emission control systems using unidirectional and reverse-flow design (passive and active flow control respectively). To this purpose a one-dimensional transient model has been developed and the cooling process of different system configurations has been studied. The influence of the engine operating conditions on the system performances has been analysed and the fuel saving capability of the several arrangements has been investigated. The analysis showed that the system with active reverse flow and pellet packed bed design presents higher heat retention capability. Moreover, the numerical model put in evidence the large influence of the exhaust gas temperature on the energy efficiency of the emission control systems and the significant effect of unburned hydrocarbons concentration.
Technical Paper

A Comparative Analysis of Active and Passive Emission Control Systems Adopting Standard Emission Test Cycles

2017-09-04
2017-24-0125
The aim of the present work is to analyse and compare the energetic performances and the emissions conversion capability of active and passive aftertreatment systems for lean burn engines. To this purpose, a computational one-dimensional transient model has been developed and validated. The code permits to assess the heat exchange between the solid and the exhaust gas, to evaluate the conversion of the main engine pollutants, and to estimate the energy effectiveness. The response of the systems to variations in engine operating conditions have been investigated considering standard emission test cycles. The analysis highlighted that the active flow control tends to increase the thermal inertia of the apparatus and then it appears more suitable to maintain higher temperature level and to guarantee higher pollutants conversion at low engine loads after long full load operation.
Technical Paper

Numerical and Experimental Analysis of the Flow Field within a Lean NOx Trap for Diesel Engines

2011-09-11
2011-24-0180
The present study aims at analyzing the flow field within a Lean NOx Trap (LNT). To this purpose a twofold approach based on the synergic use of numerical and non-intrusive experimental techniques was adopted. The measurements were carried out at a steady flow rig in terms of global performances and local velocity measurements. In particular, mass flow rates and pressure drops were used to define the global fluid dynamic efficiency of the system, while the Laser Doppler Anemometry (LDA) technique was employed to determine the flow field within the aftertreatment apparatus. At the same time, a finite volume CFD code was adopted for the numerical analysis. The comparison between experimental and numerical data displayed a good agreement in terms of global and local quantities. Specifically, the numerical code well-reproduced the main structure within the emission control system.
Technical Paper

Numerical Modelling and Experimental Validation of the Thermal Behavior of Li-ion Batteries for EVs Applications

2023-08-28
2023-24-0153
In this work, a dynamic 0-D electro-thermal model of a lithium-polymer battery for automotive applications is presented. The model predicts the battery temperature during its charging/discharging phases under different environmental and operating conditions, by considering the requested power or current, the coolant flow rate and its temperature as model inputs. The model was first validated with experimental data carried out at the test bench where only the convective heat transfer between the battery and the ambient air was considered. The accuracy of the internal heat generation model was experimentally assessed for different current discharge rates. Then, a liquid cooling system was designed on purpose, assembled, and installed on the battery at the test bench for the improvement of the model predictions in liquid convection conditions.
Technical Paper

1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations

2023-08-28
2023-24-0098
The road transportation sector is undergoing significant changes, and new green scenarios for sustainable mobility are being proposed. In this context, a diversification of the vehicles’ propulsion, based on electric powertrains and/or alternative fuels and technological improvements of the electric vehicles charging stations, are necessary to reduce greenhouse gas emissions. The adoption of internal combustion engines operating with alternative fuels, like methanol, may represent a viable solution for overcoming the limitations of actual grid connected charging infrastructure, giving the possibility to realize off-grid charging stations. This work aims, therefore, at investigating this last aspect, by evaluating the performance of an internal combustion engine fueled with methanol for stationary applications, in order to fulfill the potential demand of an on off-grid charging station.
X