Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Energy Efficiency Analysis of Monolith and Pellet Emission Control Systems in Unidirectional and Reverse-Flow Designs

2009-09-13
2009-24-0155
The work aims at analysing the energetic performances of monolith and pellet emission control systems using unidirectional and reverse-flow design (passive and active flow control respectively). To this purpose a one-dimensional transient model has been developed and the cooling process of different system configurations has been studied. The influence of the engine operating conditions on the system performances has been analysed and the fuel saving capability of the several arrangements has been investigated. The analysis showed that the system with active reverse flow and pellet packed bed design presents higher heat retention capability. Moreover, the numerical model put in evidence the large influence of the exhaust gas temperature on the energy efficiency of the emission control systems and the significant effect of unburned hydrocarbons concentration.
Technical Paper

Powertrain Thermal Management for CO2 Reduction

2018-05-30
2018-37-0020
This work presents a methodology for the optimal thermal management of different powertrain devices, with particular regard to ICEs, power electronic units (IGBT) and PEM Fuel cells. The methodology makes use of Model Predictive Control by means of a zero-dimensional model for the heat transfer between the device and the coolant. The control is based on the careful monitoring of the coolant thermal state by means of a metrics for the occurrence of nucleate boiling. The introduction of an electrically driven pump for the control of the coolant flow rate is considered. The effectiveness of the proposed approach is presented with reference to an ICE operation. Experimental tests show the advantages of the methodology during warm-up, under fully warmed operation and for the avoidance of after-boiling.
X