Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Moving Automotive Electronics from Reliability/Durability Testing to Virtual Validation Modeling Using a Physics of Failure CAE App

2014-04-01
2014-01-0233
Quality, Reliability, Durability (QRD) and Safety of vehicular Electrical/Electronics (E/E) systems traditionally have resulted from arduous rounds of Design-Built-Test-Fix (DBTF) Reliability and Durability Growth Testing. Such tests have historically required 12-16 or more weeks of Accelerated Life Testing (ALT), for each round of validation in a new product development program. Challenges have arisen from: The increasing number of E/E modules in today's vehicle places a high burden on supplier's test labs and budgets. The large size and mass of electric vehicle power modules results in a lower test acceleration factors which can extend each round of ALT to 5-6 months. Durability failures tend to occur late in life testing, resulting in the need to: perform a root cause investigation, fix the problem, build new prototype parts and then repeat the test to verify problem resolutions, which severely stress program budgets and schedules.
Technical Paper

SAE J3168: A Joint Aerospace-Automotive Recommended Practice for Reliability Physics Analysis of Electrical, Electronic and Electromechanical Components

2019-04-02
2019-01-1252
This paper describes a joint SAE automotive and aerospace Recommended Practice SAE J3168 now in development to standardize a process for Reliability Physics Analysis. This is a science-based approach to implement Physics-of-Failure research in conducting durability simulations in a Computer Aided Engineering Environment. It is used to calculate failure mechanism susceptibilities and estimate the likelihood of failure and the expected durability life of Electrical, Electronic and Electromechanical components and equipment, due to stresses such as mechanical shock, vibration, temperature cycling, etc. Reliability Physics Analysis is based on the material science principle of stress driven damage accumulation in materials. The process enables the identification of potential failure risks early in the design phase so that such risks can be designed out in order to efficiently design high reliable and robustness into electronic products.
X