Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A Simulation Method to Guide DISI Engine Redesign for Increased Efficiency using Alcohol Fuel Blends

2010-04-12
2010-01-1203
A turbocharged 2.0L 4-cylinder direct injection spark ignition (DISI) engine designed for use with gasoline is simulated using one dimensional engine simulation. Engine design modifications - increased compression ratio, 2-step valve train with dual independent cam phasing and fuel injection timing - are considered in an effort to improve fuel economy with gasoline and take advantage of properties of ethanol fuel blends (up to E85). This paper discusses a methodology to use the simulation to quantitatively evaluate the design modification effects on fuel economy. Fuel consumption predictions from the simulation for each design are evaluated. The goal is to identify the best design with the constraints of hardware physical limitations, engine residual tolerance and knock tolerance. The result yields a specification for a 2-step valve train design and phasing requirements that can improve fuel economy for each compression ratio design.
Journal Article

Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

2013-04-08
2013-01-1665
In this study the authority of the available engine controls are characterized as the high load limit of homogeneous charge compression ignition (HCCI) combustion is approached. A boosted single-cylinder research engine is used and is equipped with direct injection (DI) fueling, a laboratory air handling system, and a hydraulic valve actuation (HVA) valve train to enable negative valve overlap (NVO) breathing. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. While both are effective at controlling combustion phasing, NVO duration is found to be a "coarse" control while fuel injection timing is a "fine" control.
Journal Article

Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions

2016-04-05
2016-01-0760
The second generation 1.8L Gasoline Direct Injection Compression Ignition (GDCI) engine was built and tested using RON91 gasoline. The engine is intended to meet stringent US Tier 3 emissions standards with diesel-like fuel efficiency. The engine utilizes a fulltime, partially premixed combustion process without combustion mode switching. The second generation engine features a pentroof combustion chamber, 400 bar central-mounted injector, 15:1 compression ratio, and low swirl and squish. Improvements were made to all engine subsystems including fuel injection, valve train, thermal management, piston and ring pack, lubrication, EGR, boost, and aftertreatment. Low firing friction was a major engine design objective. Preliminary test results indicated good improvement in brake specific fuel consumption (BSFC) over the first generation GDCI engines, while meeting targets for engine out emissions, combustion noise and stability.
Technical Paper

Investigation of Knock Limited Compression Ratio of Ethanol Gasoline Blends

2010-04-12
2010-01-0619
Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock-limited compression ratio of ethanol-gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single-cylinder direct-injection spark-ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT and other high-load conditions to determine the knock-limited compression ratio (CR) of ethanol fuel blends. The geometric CR is varied by changing pistons, producing CR from 9.2 to 12.87.
X