Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Phasing Strategy for an Engine with Twin Variable Cam Timing

2002-03-04
2002-01-1101
Twin camshaft phasing was applied to a 1.6l 4-cylinder 16-valve DOHC engine. Both camshafts - intake and exhaust - were equipped with continuously adjustable cam phasing units. Different operating strategies were compared with regard to mechanical feasibility, thermodynamics and calibration. Attractive part load fuel economy was achieved with two different phasing strategies. With regard to full load and idle a preferred twin camshaft phasing strategy was determined. It was found favorable to shift the intake camshaft largely towards ‘advance’, and the exhaust camshaft towards ‘retard’. Maximum fuel economy improvement was 8% at 2500 rpm and 3 bar mean effective pressure. In the European drive cycle 5 % fuel economy improvement was obtained. To achieve superior performance it is mandatory to combine twin camshaft phasing with an appropriate exhaust system and optimized cam events.
Journal Article

Unified Power-Based Analysis of Combustion Engine and Battery Electric Vehicle Energy Consumption

2022-03-29
2022-01-0532
The previously developed power-based fuel consumption theory for Internal Combustion Engine Vehicles (ICEV) is extended to Battery Electric Vehicles (BEV). The main difference between the BEV model structure and the ICEV is the bi-directional character of traction motors and batteries. A traction motor model was developed as a bi-linear function of positive and negative traction power. Another difference is that the accessories and cabin heating are powered directly from the battery, and not from the powertrain. The resulting unified model for ICEV and BEV energy consumption has linear terms proportional to positive and negative traction power, accessory power, and overhead, in varying proportions. Compared to the ICEV, the BEV powertrain has a high marginal efficiency and low overhead. As a result, BEV energy consumption data under a wide range of driving conditions are mainly proportional to net traction power, with only a small offset.
Technical Paper

Application of the Power-Based Fuel Consumption Model to Commercial Vehicles

2021-04-06
2021-01-0570
Fuel power consumption for light duty vehicles has previously been shown to be proportional to vehicle traction power, with an offset for overhead and accessory losses. This allows the fuel consumption for an individual powertrain to be projected across different vehicles, missions, and drive cycles. This work applies the power-based model to commercial vehicles and demonstrates its usefulness for projecting fuel consumption on both regulatory and customer use cycles. The ability to project fuel consumption to different missions is particularly useful for commercial vehicles, as they are used in a wide range of applications and with customized designs. Specific cases are investigated for Light and Medium Heavy- Duty work trucks. The average power required by a vehicle to drive the regulatory cycles varies by nearly a factor 10 between the Class 4 vehicle on the ARB Transient cycle and the loaded Class 7 vehicle at 65 mph on grade.
X