Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Identification of AeroAcoustic Noise Sources Using Inverse Boundary Element Method

2005-05-16
2005-01-2497
This paper explores the use of inverse boundary element method to identify aeroacoustic noise sources. In the proposed approach, sound pressure at a few locations out of the flow field is measured, followed by the reconstruction of acoustic particle velocity on the surface where the noise is generated. Using this reconstructed acoustic particle velocity, the acoustic response anywhere in the field, including in the flow field, can be predicted. This approach is advantageous since only a small number of measurement points are needed and can be done outside of the flow field, and a relatively fast computational time. As an example, a prediction of vortex shedding noise from a circular cylinder is presented.
Technical Paper

Using Numerical Acoustics to Diagnose Noise Problems

2005-05-16
2005-01-2324
Numerical acoustics has traditionally been relegated to a prediction only role. However, recent work has shown that numerical acoustics techniques can be used to diagnose noise problems. The starting point for these techniques is the acoustic transfer vector (ATV). First of all, ATV's can be used to conduct contribution analyses which can assess which parts of a machine are the predominant noise sources. As an example, the sound power contribution and radiation efficiency from parts of a running diesel engine are presented in this paper. Additionally, ATV's can be used to reliably reconstruct the vibration on a machine surface. This procedure, commonly called inverse numerical acoustics (INA), utilizes measured sound pressures along with ATV's to reconstruct the surface velocity. The procedure is demonstrated on an engine cover for which the reconstructed vibration had excellent agreement with experimental results.
X