Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Sound Through Partial Enclosures with Louvers

2001-04-30
2001-01-1525
This paper considers the use of partial enclosures and absorbing materials inside those enclosures to dissipate energy. Several experiments were conducted where various parameters of an enclosure were altered and the effect on the noise radiating through the opening was measured. From these results, the parameters that play the most important role in sound radiation through the opening of an enclosure were determined. The two-point method and decomposition theory were used to calculate the transmission loss, which was used as the primary variable to analyze the enclosure's performance; the transmission loss is shown to be a better variable than sound pressure or output sound power for this purpose. Numerical simulations were conducted using the indirect boundary element method, and the results were compared with experimental results.
Technical Paper

A New Look at the High Frequency Boundary Element and Rayleigh Integral Approximations

2003-05-05
2003-01-1451
This paper revisits the popular Rayleigh integral approximation, and also considers a second approximation, the high frequency boundary element method which is similar to the Rayleigh integral. Both methods are approximations to the boundary integral equation, and can solve problems in a fraction of the time required by the conventional boundary element method. The development of both methods from the Helmholtz integral equation is demonstrated and the differences between the two methods are delineated. Both methods were compared on practical examples including a running engine, gearbox, and construction cab. It was concluded that both methods can reliably predict the sound power for many problems but are inaccurate for sound pressure computations.
Technical Paper

Identification of AeroAcoustic Noise Sources Using Inverse Boundary Element Method

2005-05-16
2005-01-2497
This paper explores the use of inverse boundary element method to identify aeroacoustic noise sources. In the proposed approach, sound pressure at a few locations out of the flow field is measured, followed by the reconstruction of acoustic particle velocity on the surface where the noise is generated. Using this reconstructed acoustic particle velocity, the acoustic response anywhere in the field, including in the flow field, can be predicted. This approach is advantageous since only a small number of measurement points are needed and can be done outside of the flow field, and a relatively fast computational time. As an example, a prediction of vortex shedding noise from a circular cylinder is presented.
X