Refine Your Search

Search Results

Viewing 1 to 17 of 17
Journal Article

Integration Strategies for Efficient Multizone Chemical Kinetics Models

2010-04-12
2010-01-0576
Three integration strategies are developed and tested for the stiff, ordinary differential equation (ODE) integrators used to solve the fully coupled multizone chemical kinetics model. Two of the strategies tested are found to provide more than an order of magnitude of improvement over the original, basic level of usage for the stiff ODE solver. One of the faster strategies uses a decoupled, or segregated, multizone model to generate an approximate Jacobian. This approach yields a 35-fold reduction in the computational cost for a 20 zone model. Using the same approximate Jacobian as a preconditioner for an iterative Krylov-type linear system solver, the second improved strategy achieves a 75-fold reduction in the computational cost for a 20 zone model. The faster strategies achieve their cost savings with no significant loss of accuracy.
Journal Article

The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines

2017-09-04
2017-24-0061
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions [1]. In this study, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressive pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects.
Journal Article

Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions

2008-04-14
2008-01-0019
One way to increase the load range in an HCCI engine is to increase boost pressure. In this modeling study, we investigate the effect of increased boost pressure on the fuel chemistry in an HCCI engine. Computed results of HCCI combustion are compared to experimental results in a HCCI engine. We examine the influence of boost pressure using a number of different detailed chemical kinetic models - representing both pure compounds (methylcyclohexane, cyclohexane, iso-octane and n-heptane) and multi-component models (primary reference fuel model and gasoline surrogate fuel model). We examine how the model predictions are altered by increased fueling, as well as reaction rate variation, and the inclusion of residuals in our calculations. In this study, we probe the low temperature chemistry (LTC) region and examine the chemistry responsible for the low-temperature heat release (LTHR) for wide ranges of intake boost pressure.
Journal Article

Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

2017-03-28
2017-01-0671
Previous studies have shown that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flame speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed.
Technical Paper

Effects of Toluene Addition to Primary Reference Fuel at High Temperature

2007-10-29
2007-01-4104
The ignition delay times of primary reference fuel (PRF) and toluene mixtures have been measured behind the reflected shock waves. The range of experiments covered combustion of fuel in diluted argon for stoichiometric mixtures, pressures of 2.5 atm, temperatures from 1200-1600 K, 0.4% of fuel concentration. The ignition delay times of n-heptane increased with the addition of toluene. However the ignition delay times of iso-octane decreased with the addition of toluene from 0 to 50% and increased from 50 to 100%. A detailed kinetic model with cross reactions considered in this study can not reproduce the trend of ignition delay times for iso-octane/toluene mixtures. From the reaction path analysis, it was suggested that cross reactions between alkenes and aromatics are required to account for these experimental results.
Technical Paper

Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels

2007-04-16
2007-01-0175
The development of surrogate mixtures that represent gasoline combustion behavior is reviewed. Combustion chemistry behavioral targets that a surrogate should accurately reproduce, particularly for emulating homogeneous charge compression ignition (HCCI) operation, are carefully identified. Both short and long term research needs to support development of more robust surrogate fuel compositions are described. Candidate component species are identified and the status of present chemical kinetic models for these components and their interactions are discussed. Recommendations are made for the initial components to be included in gasoline surrogates for near term development. Components that can be added to refine predictions and to include additional behavioral targets are identified as well. Thermodynamic, thermochemical and transport properties that require further investigation are discussed.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine

2009-06-15
2009-01-1806
Now more than ever, the increasing strictness of environmental regulation and the stronger need of higher efficiency standards are pushing for the development of cleaner and energy-efficient powertrains. HCCI engines are suitable candidates to achieve these objectives. Understanding the autoignition process and how it is affected by operating conditions is central to the development of these engines. In addition to experiments, detailed kinetic modeling represents a very effective tool for gaining deeper insight into the fundamentals of HCCI autoignition and combustion. Indeed, modeling activities are today widely used in engine design, allowing a significant reduction in prototype development costs and providing a valuable support to the improvement of control strategies.
Technical Paper

Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

2001-03-05
2001-01-0653
The influence of the addition of oxygenated hydrocarbons to diesel fuels has been studied, using a detailed chemical kinetic model. Resulting changes in ignition and soot precursor production have been examined. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether, dimethoxymethane and methyl butanoate were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 30-40 % by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.
Technical Paper

A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion

2001-03-05
2001-01-1027
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. This procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers.
Technical Paper

Detailed Kinetic Modeling of Conventional Gasoline at Highly Boosted Conditions and the Associated Intermediate Temperature Heat Release

2012-04-16
2012-01-1109
The combustion behavior of conventional gasoline has been numerically investigated by means of detailed chemical-kinetic modeling simulations, with particular emphasis on analyzing the chemistry of the intermediate temperature heat release (ITHR). Previous experimental work on highly boosted (up to 325 kPa absolute) HCCI combustion of gasoline (SAE 2020-01-1086) showed a steady increase in the charge temperature up to the point of hot ignition, even for conditions where the ignition point was retarded well after top dead center (TDC). Thus, sufficient energy was being released by early pre-ignition reactions resulting in temperature rise during the early part of the expansion stroke This behavior is associated with a slow pre-ignition heat release (ITHR), which is critical to keep the engine from misfiring at the very late combustion phasings required to prevent knock at high-load boosted conditions.
Technical Paper

Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine

2004-06-08
2004-01-1849
The effect of oxygenate molecular structure on soot emissions from a DI diesel engine was examined using carbon-14 (14C) isotope tracing. Carbon atoms in three distinct chemical structures within the diesel oxygenate dibutyl maleate (DBM) were labeled with 14C. The 14C from the labeled DBM was then detected in engine-out particulate matter (PM), in-cylinder deposits, and CO2 emissions using accelerator mass spectrometry (AMS). The results indicate that molecular structure plays an important role in determining whether a specific carbon atom either does or does not form soot. Chemical-kinetic modeling results indicate that structures that produce CO2 directly from the fuel are less effective at reducing soot than structures that produce CO before producing CO2.
Technical Paper

Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

2005-10-24
2005-01-3741
Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1328 species and 5835 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation.
Technical Paper

A Multi-Zone Model for Prediction of HCCI Combustion and Emissions

2000-03-06
2000-01-0327
Homogeneous Charge Compression Ignition (HCCI) combustion is a process dominated by chemical kinetics of the fuel-air mixture. The hottest part of the mixture ignites first, and compresses the rest of the charge, which then ignites after a short time lag. Crevices and boundary layers generally remain too cold to react, and result in substantial hydrocarbon and carbon monoxide emissions. Turbulence has little effect on HCCI combustion, and may be most important as a factor in determining temperature gradients and boundary layer thickness inside the cylinder. The importance of thermal gradients inside the cylinder makes it necessary to use an integrated fluid mechanics-chemical kinetics code for accurate predictions of HCCI combustion. However, the use of a fluid mechanics code with detailed chemical kinetics is too computationally intensive for today's computers.
Technical Paper

Quantifying Uncertainty in Predictions of Kinetically Modulated Combustion: Application to HCCI Using a Detailed Transportation Fuel Model

2018-04-03
2018-01-1251
Simulation of chemical kinetic processes in combustion engine environments has become ubiquitous towards the understanding of combustion phenomenology, the evaluation of controlling parameters, and the design of configurations and/or control strategies. Such calculations are not free from error however, and the interpretation of simulation results must be considered within the context of uncertainties in the chemical kinetic model. Uncertainties arise due to structural issues (e.g., included/missing reaction pathways), as well as inaccurate descriptions of kinetic rate parameters and thermochemistry. In fundamental apparatuses like rapid compression machines and shock tubes, computed constant-volume ignition delay times for simple, single-component fuels can have variations on the order of factors of 2-4.
Technical Paper

Computational Chemistry Consortium: Surrogate Fuel Mechanism Development, Pollutants Sub-Mechanisms and Components Library

2019-09-09
2019-24-0020
The Computational Chemistry Consortium (C3) is dedicated to leading the advancement of combustion and emissions modeling. The C3 cluster combines the expertise of different groups involved in combustion research aiming to refine existing chemistry models and to develop more efficient tools for the generation of surrogate and multi-fuel mechanisms, and suitable mechanisms for CFD applications. In addition to the development of more accurate kinetic models for different components of interest in real fuel surrogates and for pollutants formation (NOx, PAH, soot), the core activity of C3 is to develop a tool capable of merging high-fidelity kinetics from different partners, resulting in a high-fidelity model for a specific application. A core mechanism forms the basis of a gasoline surrogate model containing larger components including n-heptane, iso-octane, n-dodecane, toluene and other larger hydrocarbons.
Journal Article

Laminar Burning Velocities of High-Performance Fuels Relevant to the Co-Optima Initiative

2019-04-02
2019-01-0571
Laminar burning velocity (LBV) measurements are reported for promising high-performance fuels selected as drop-in transportation fuels to automotive grade gasoline as part of the United States Department of Energy’s Co-Optimization of Fuels and Engines Initiative (Co-Optima). LBV measurements were conducted for ethanol, methyl acetate, and 2-methylfuran with synthetic air (79.0 % N2 and 21.0 % O2 by volume) within a constant-volume spherical combustion rig. Mixture initial temperature was fixed at 428±4 K, with the corresponding initial pressure of 1.00±0.02 atm. Current LBV of ethanol is in good agreement with literature data. LBV of ethanol and 2-methylfuran showed similar values over the range of equivalence ratios, while methyl acetate exhibited an LBV significantly lower over the range of tested equivalence ratios. The maximum laminar burning velocity occurred at slightly richer equivalence ratio from the stoichiometric value for all fuels tested.
X