Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Characterization of Lean NOx Trap Catalysts with In-Cylinder Regeneration Strategies

2008-04-14
2008-01-0448
Lean NOx trap (LNT) catalysts with different formulations have been characterized on a light-duty diesel engine platform. Two in-cylinder regeneration strategies were used during the study. The reductant chemistry differed for both strategies with one strategy having high levels of CO and H2 and the other strategy having a higher hydrocarbon component. The matrix of LNT catalysts that were characterized included LNTs with various sorbate loads and varying ceria content; the sorbate was Ba. Intra-catalyst measurements of exhaust gas composition were obtained at one quarter, one half, and three quarters of the length of the catalysts to better understand the affect of formulation on performance. Exhaust analysis with FTIR allowed measurement of NH3 and thereby, a measurement of N2 selectivity for the catalysts. Although overall NOx conversion increased with increasing sorbate load, the formation of NH3 increased as well.
Technical Paper

Performance of a NOX Adsorber and Catalyzed Particle Filter System on a Light-Duty Diesel Vehicle

2001-05-07
2001-01-1933
A prototype emissions control system consisting of a close-coupled lightoff catalyst, catalyzed diesel particle filter (CDPF), and a NOX adsorber was evaluated on a Mercedes A170 CDI. This laboratory experiment aimed to determine whether the benefits of these technologies could be utilized simultaneously to allow a light-duty diesel vehicle to achieve levels called out by U.S. Tier 2 emissions legislation. This research was carried out by driving the A170 through the U.S. Federal Test Procedure (FTP), US06, and highway fuel economy test (HFET) dynamometer driving schedules. The vehicle was fueled with a 3-ppm ultra-low sulfur fuel. Regeneration of the NOX adsorber/CDPF system was accomplished by using a laboratory in-pipe synthesis gas injection system to simulate the capabilities of advanced engine controls to produce suitable exhaust conditions. The results show that these technologies can be combined to provide high pollutant reduction efficiencies in excess of 90% for NOX and PM.
Technical Paper

Effects of Regeneration Conditions on NOX Adsorber Performance

2002-10-21
2002-01-2876
A 1999 Mercedes A170 CDI has been equipped with prototype NOX adsorber devices in order to study the impacts of regeneration conditions on the emissions reduction performance of the devices. This study consisted of a number of laboratory experiments utilizing a bottled-gas injection system to periodically provide fuel-rich exhaust conditions for device regeneration. The NOX adsorbers were evaluated on the LA4 driving cycle using a fixed regeneration schedule. The rich-pulse duration and minimum air/fuel ratio during the rich pulse were varied and the impacts upon pollutant emission rates measured. Results are presented for 5 prototype NOX adsorbers.
Technical Paper

In-Cylinder Production of Hydrogen During Net-Lean Diesel Operation

2006-04-03
2006-01-0212
Hydrogen (H2) is an excellent reductant, and has been shown to be highly effective when introduced into a variety of catalysts such as three-way catalysts, lean NOx traps (LNTs), and hydrocarbon lean NOx catalysts (also termed hydrocarbon selective catalytic reduction (SCR) catalysts). Furthermore, since lean-burn engines offer improved fuel efficiency yet difficult NOx emission control, H2 production during lean operation for the purpose of NOx reduction could be beneficial. On-board generation of hydrogen is being explored via catalytic or plasma-based reformers. A possible alternative to these add-on systems is generation of the H2 in-cylinder with standard fuel injection hardware. This paper details experiments relating to the production and measurement of H2 under net-lean operation in a common-rail diesel engine. In-cylinder fuel control is used to tailor the combustion process such that H2 is generated while maintaining a lean Air:Fuel ratio in the bulk exhaust gas.
Technical Paper

In-Cylinder Regeneration of Lean NOx Trap Catalysts Using Low Temperature Combustion

2006-04-03
2006-01-1416
A Lean NOx Trap (LNT) regeneration method that has shown promise regarding its ability to effectively regenerate the LNT, while not adversely affecting the PM emissions, involves the use of Low Temperature Combustion (LTC). LTC is accomplished by highly diluting the intake charge with EGR.1-3* If enough EGR is applied, the in-cylinder air:fuel mixture, and ensuing exhaust, will become rich, thereby regenerating the LNT. This type of highly dilute combustion tends to be more premixed than diffusion, which can lower engine-out PM and NOx emissions. LTC regeneration has been characterized and results are presented comparing this approach to other approaches for rich, in-cylinder diesel combustion for LNT regeneration.
Technical Paper

Nitrogen Selectivity in Lean NOx Trap Catalysis with Diesel Engine In-Cylinder Regeneration

2005-10-24
2005-01-3876
NOx emissions have traditionally been difficult to control from diesel engines; however, lean NOx trap catalysts have been shown to reduce NOx emissions from diesel engines by greater than 90% under some conditions. It is imperative that lean NOx traps be highly selective to N2 to achieve the designed NOx emissions reduction. If selectivity for NOx reduction to NH3 or N2O is significant then, ultimately, higher levels of pollution or greenhouse emissions will result. Here studies of the N2 selectivity of lean NOx trap regeneration with in-cylinder techniques are presented. Engine dynamometer studies with a light-duty engine were performed, and a lean NOx trap in the exhaust system was regenerated by controlling in-cylinder fuel injection timing and amounts to achieve rich exhaust conditions. NH3 and N2O emissions were analyzed with FTIR spectroscopy.
Technical Paper

Assessing Reductant Chemistry During In-Cylinder Regeneration of Diesel Lean NOx Traps

2004-10-25
2004-01-3023
Lean NOx Trap (LNT) catalysts are capable of reducing NOx in lean exhaust from diesel engines. NOx is stored on the catalyst during lean operation; then, under rich exhaust conditions, the NOx is released from and reduced by the catalyst. The process of NOx release and reduction is called regeneration. One method of obtaining the rich conditions for regeneration is to inject additional fuel into the engine cylinders while throttling the engine intake air flow to effectively run the engine at rich air:fuel ratios; this method is called “in-cylinder” regeneration. In-cylinder regeneration of LNT catalysts has been demonstrated and is a candidate emission control technique for commercialization of light-duty diesel vehicles to meet future emission regulations. In the study presented here, a 1.7-liter diesel engine with a LNT catalyst system was used to evaluate in-cylinder regeneration techniques.
Technical Paper

NOx Adsorber Performance In A Light-Duty Diesel Vehicle

2000-10-16
2000-01-2912
Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program (1, 2, 3 and 4)1. Ultra-low sulfur (3 ppm) diesel fuel was doped to 30 and 150 ppm sulfur so that all fuel properties except sulfur content would be the same. Although the Mercedes A170 vehicle is not certified for sale in the United States, its particulate matter (PM) and nitrogen oxide (NOx) emissions in the as-tested condition were within the Environmental Protection Agency's Tier 1 full useful life standards with its OEM oxidation catalysts installed. Engine-out tests showed that the OEM catalysts reduce PM by 30-40%.
Technical Paper

Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst in Lean Gasoline Engine Exhaust

2015-04-14
2015-01-1008
Ethanol is a very effective reductant for nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environments. With the widespread availability of ethanol/gasoline-blended fuel in the U.S., lean gasoline engines equipped with Ag/Al2O3 catalysts have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for evaluation of catalyst performance.
Technical Paper

Catalyzed Diesel Particulate Filter Performance in A Light-Duty Vehicle

2000-10-16
2000-01-2848
Light-duty chassis dynamometer driving cycle tests were conducted on a Mercedes A170 diesel vehicle with various sulfur-level fuels and exhaust emission control systems. Triplicate runs of a modified light-duty federal test procedure (FTP), US06 cycle, and SCO3 cycle were conducted with each exhaust configuration and fuel. Ultra-low sulfur (3-ppm) diesel fuel was doped to 30- and 150-ppm sulfur so ppm sulfur so that all other fuel properties remained the same. The fuels used in these experiments met the specifications of the fuels from the DECSE (Diesel Emission Control Sulfur Effects) program. Although the Mercedes A170 vehicle is not available in the United States, its emissions in the as tested condition fell within the U.S. Tier 1 full useful life standards with the OEM catalysts installed. Tests with the OEM catalysts removed showed that the OEM catalysts reduced PM emissions from the engine-out condition by 30-40% but had negligible effects on NOx emissions.
X