Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Rollover and Near-Rollover Kinematics During Evasive Steer Maneuvers

2022-03-29
2022-01-0855
Vehicle rollovers are complex events that can be difficult to reconstruct. The goal of this study was to explore whether different vehicle trip models could identify when during the trip phase a vehicle possesses the dynamic conditions needed to rollover. We used three sport utility vehicles (SUVs) with either absent or disabled electronic stability control to conduct six tests involving a steer-induced control loss on a large flat concrete surface. Vehicle kinematics were measured using a GPS speed sensor, tri-axial accelerometers, tri-axial angular rate sensors, and both drone- and land-based video cameras. Four vehicle trip metrics were derived and evaluated using the vehicle dynamics between steer onset and the end of the trip phase. During three tests, one or more of the vehicle’s tires lifted off the ground but the vehicle did not roll. In the other three tests, the vehicle rolled.
Technical Paper

Decelerations for Vehicles with Anti-lock Brake Systems (ABS) on Dry Asphalt and Concrete Road Surfaces

2023-04-11
2023-01-0616
Anti-lock brake systems (ABS) produce high levels of vehicle deceleration under emergency braking conditions by modulating tire slip. Currently there are limited data available to quantify the mean, variance, and distribution of vehicle deceleration levels for modern ABS-equipped vehicles. We conducted braking tests using twenty (20) late-model vehicles on contiguous dry asphalt and concrete road surfaces. All vehicles were equipped with a 5th wheel sampled at 200 Hz, from which vehicle speed and deceleration as a function of time were calculated. Eighteen (18) tests were conducted for each vehicle and all tests were conducted from a targeted initial speed of 65 km/h (40 mph). Overall, we found that late-model ABS-equipped vehicles can decelerate at average levels that vary from about 0.871g to 1.081g across both surfaces, and that deceleration levels were on average about 0.042g higher on asphalt than on concrete.
X