Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Phase Diagrams of Different Modes of Misfire Calculated from the Digital Fourier Transformation of Angular Crankshaft Velocity

2010-04-12
2010-01-0167
Certain harmonics of angular crankshaft velocity are indicative of engine imbalance induced by cylinder misfire. Application of the Digital Fourier Transformation (DFT) facilitates the production-feasible calculation of a singular index in the frequency domain indicative either of smooth engine operation or misfire. The phase of that particular index with proper interpretation directly points to a misfiring cylinder. The identification of a misfiring pair, either opposing or a non-opposing in the cylinder bank, requires a bit more sophisticated approach since the phase response of the characteristic index in the frequency domain becomes more complex. The method demonstrated here was successfully applied in real time in four-, six-, and eight-cylinder engines, both SI and Diesel, for the On-Board Diagnostic application with reliability exceeding relevant regulatory requirements.
Technical Paper

Low Volatility Fuel Delivery Control during Cold Engine Starts

2005-04-11
2005-01-0639
The intensity of a combustion flame ionization current signal (ionsense) can be used to monitor and control combustion in individual cylinders during a cold engine start. The rapid detection of poor or absence of combustion can be used to determine fuel delivery corrections that may prevent engine stalls. With the ionsense cold start control active, no start failures were recorded even when the initially (prior to ionsense correction) commanded fueling had failed to produce a combustible mixture. This new dimension in fuel control allows for leaner cold start calibrations that would still be robust against the possible use of low volatility gasoline. Consequently, when California Phase 2 fuel is used, cold start hydrocarbon emissions could be lowered without the risk of an engine stall if the appropriate fuel is replaced with a less volatile one.
Technical Paper

Wavelet Filtering of Cylinder Pressure Signal for Improved Polytropic Exponents, Reduced Variation in Heat Release Calculations and Improved Prediction of Motoring Pressure & Temperature

2018-04-03
2018-01-1150
Recent advancements in the combustion control of new generation engines can benefit from real time, precise sensing of the cylinder pressure profile to facilitate successful combustion feedback. Currently, even laboratory-grade pressure sensors can deliver pressure traces with insufficient signal-to-noise quality due to electrical or combustion-induced signal interference. Consequently, for example, calculation of compression and expansion polytropic indices may require statistical averaging over several cycles to deliver required information. This lag in the resultant feedback may become a concern when the calculated combustion metric is used for feedback control, especially in the case of transients. The method described in this paper involves a special digital filter offering excellent performance which facilitates reduced-error calculation of individual polytropic indices.
X