Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Estimation of Surface Heat Flux in IC Engines Using Temperature Measurements: Processing Code Effects

2012-04-16
2012-01-1208
Heat transfer in internal combustion engines is taking on greater importance as manufacturers strive to increase efficiency while keeping pollutant emissions low and maintaining adequate performance. Wall heat transfer is experimentally evaluated using temperature measurements both on and below the surface using a physical model of conduction in the wall. Three classes of model inversion are used to recover heat flux from surface temperature measurements: analytical methods, numerical methods and inverse heat conduction methods; the latter method has not been previously applied to engine data. This paper details the inherent assumptions behind, required steps for implementation of, and merits and weaknesses of these heat flux calculation methods. The analytical methods, which have been most commonly employed for engine data, are shown to suffer from sensitivity to measurement noise that requires a priori signal filtering.
Technical Paper

Investigation of Bulk In-Cylinder Stratification with Split Intake Runners

2007-10-29
2007-01-4044
The mixing between the flows introduced through different intake valves of a four-valve engine was investigated optically. Each valve was fed from a different intake system, and the relative sensitivity to different flow parameters (manipulated with the goal of enhancing the bulk in-cylinder stratification) was investigated. Flow manipulation was achieved in three primary ways: modifying the intake runner geometry upstream of the head, introducing flow-directing baffles into the intake port, and attaching flow break-down screens to the intake valves. The relative merits of each flow manipulation method was evaluated using planar laser-induced fluorescence (PLIF) of 3-pentanone, which was introduced to the engine through only one intake valve. Images were acquired from 315° bTDC through 45° bTDC, and the level of in-cylinder stratification was evaluated on an ensemble and cycle-to-cycle basis using a novel column-based probability distribution function (PDF) contour plot.
Technical Paper

Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion

2006-04-03
2006-01-1520
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Technical Paper

Optical Investigation of the Impact of Pilot Ratio Variations on Natural Gas Diesel Dual-Fuel Combustion

2019-04-02
2019-01-1159
Experiments were performed on a small-bore optically accessible engine to investigate diesel pilot ignition (DPI) and reactivity controlled compression ignition (RCCI) dual-fuel combustion strategies with direct injection of natural gas and diesel. Parametric variations of pilot ratio were performed. Natural luminosity and OH chemiluminescence movies of the combustion processes were captured at 28.8 and 14.4 kHz, respectively. These data were used to create ignition maps, which aided in comparing the propagation modes of the two combustion strategies. Lower pilot ratios resulted in lower initial heat release rates, and the initial ignition sites were generally smaller and less luminous; for increased pilot ratios the initial portion of the heat release was larger, and the ignition sites were large and bright. Comparisons between diesel pilot ignition and reactivity controlled compression ignition showed differences in combustion propagation mechanisms.
X