Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

High Resolution Scalar Dissipation and Turbulence Length Scale Measurements in an Internal Combustion Engine

2010-04-12
2010-01-0185
High resolution planar laser-induced fluorescence (PLIF) measurements were performed in an optically accessible internal combustion (IC) engine to investigate the behavior of scalar dissipation and the fine-scale structures of the turbulent scalar field. The fluorescent tracer fluorobenzene was doped into one of the two intake streams and nitrogen was used as the carrier gas to permit high signal-to-noise ratio fluorescence measurements without oxygen quenching effects. The resulting two-dimensional images allowed for an analysis of the structural detail of the scalar and scalar dissipation fields defined by the mixing of the two adjacent intake streams. High levels of scalar dissipation were found to be located within convoluted, sheet-like structures in accordance with previous studies. The fluorescence data, which were acquired during the intake stroke, were also used to examine the scalar energy and dissipation spectra.
Technical Paper

Investigation of Augmented Mixing Effects on Direct-Injection Stratified Combustion

2001-09-24
2001-01-3670
The effects of augmented mixing through the use of an auxiliary gas injection (AGI) were investigated in a direct-injection gasoline engine operated at a 22:1 overall air-fuel ratio, but with retarded injection timing such that the combustion was occurring in a locally rich mixture as evident by the elevated CO emissions. Two AGI gas compositions, nitrogen and air, were utilized, the gas supply temperature was ambient, and a wide range of AGI timings were investigated. The injected mass was less than 10% of the total chamber mass. The injection of nitrogen during the latter portion of the heat release phase resulted in a 25% reduction in the CO emissions. This reduction is considered to be the result of the increased mixing rate of the rich combustion products with the available excess air during a time when the temperatures are high enough to promote rapid oxidation.
Technical Paper

A Statistical Description of Knock Intensity and Its Prediction

2017-03-28
2017-01-0659
Cycle-to-cycle variation in combustion phasing and combustion rate cause knock to occur differently in every cycle. This is found to be true even if the end gas thermo-chemical time history is the same. Three cycles are shown that have matched combustion phasing, combustion rate, and time of knock onset, but have knock intensity that differs by a factor of six. Thus, the prediction of knock intensity must include a stochastic component. It is shown that there is a relationship between the maximum possible knock intensity and the unburned fuel energy at the time of knock onset. Further, for a small window of unburned energy at knock onset, the probability density function of knock intensity is self similar when scaled by the 95th percentile of the cumulative distribution, and log-normal in shape.
Technical Paper

High Resolution In-Cylinder Scalar Field Measurements during the Compression and Expansion Strokes

2013-04-08
2013-01-0567
High-resolution planar laser-induced fluorescence (PLIF) measurements were performed on the scalar field in an optical engine. The measurements were of sufficient resolution to fully resolve all of the length scales of the flow field through the full cycle. The scalar dissipation spectrum was calculated, and by fitting the results to a model turbulent spectrum the Batchelor scale of the turbulent flow was estimated. The scalar inhomogeneity was introduced by a low-momentum gas jet injection. A consistent trend was observed in all data; the Batchelor scale showed a minimum value at top dead center (TDC) and was nearly symmetric about TDC. Increasing the engine speed resulted in a decrease of the Batchelor scale, and the presence of a shroud on the intake valve, which increased the turbulence intensity, also reduced the Batchelor scale. The effect of the shrouded valve was less significant compared to the effect of engine speed.
Technical Paper

Bulk Cylinder Flowfield Effects on Mixing in DISI Engines

2005-04-11
2005-01-0096
Valve deactivation followed by multiple compression-expansion strokes was employed to remove intake-generated turbulence from the bulk gas in an internal combustion engine. The result was a nearly quiescent flowfield that retains the same time-varying geometry and, to a first approximation, thermodynamic conditions as a standard engine. Mass loss, and more significantly heat loss were found to contribute to a reduction in the peak cylinder pressure in the cycle following two compression-expansion strokes. The reduction of the turbulence was verified both computationally and by performing premixed combustion studies. Mixing studies of both liquid spray jets and gaseous jets were performed. Laser-induced fluorescence images of high spatial resolution and signal-to-noise ratio were acquired, allowing the calculation of the two in-plane components of the scalar dissipation rate.
Technical Paper

Gas Temperature Measurements During Ignition in an HCCI Engine

2003-03-03
2003-01-0744
Bulk gas temperature in an HCCI engine was measured using a novel optical sensing technique. A wavelength-agile absorption sensor using a fiber-coupled LED was used to measure the in-cylinder gas temperature. H2O absorption spectra spanning 1380-1420nm were recorded once every 63 μs using this sensor. The gas temperature was inferred from a least-squares fit of the integrated absorbance areas of H2O absorption features in this spectral region to those from simulated spectra. The primary source of the H2O was the humidity in the intake air. Measurements were made during the compression and early portion of the combustion phase of an n-heptane fueled HCCI engine. The measured pressure-temperature history was compared to kinetic calculations of the ignition delay, and showed the traversal of the negative temperature coefficient regime.
X