Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Mass Efficient Cross-Sections Using Dual Phase Steels For Axial and Bending Crushes

2007-04-16
2007-01-0978
Because of their excellent crash energy absorption capacity, dual phase (DP) steels are gradually replacing conventional High Strength Low Alloy (HSLA) steels for critical crash components in order to meet the more stringent vehicle crash safety regulations. To achieve optimal axial and bending crush performance using DP steels for crash components designed for crash energy absorption and/or intrusion resistance applications, the cross sections need to be optimized. Correlated crush simulation models were employed for the cross-section study. The models were developed using non-linear finite element code LS-DYNA and correlated to dynamic and quasi-static axial and bending crush tests on hexagonal and octagonal cross-sections made of DP590 steel. Several design concepts were proposed, the axial and bending crush performance in DP780 and DP980 were compared, and the potential mass savings were discussed.
Technical Paper

Denting Simulation and Verification

2002-03-04
2002-01-0789
Dent resistance is one of the major requirements for automotive body panel design. It depends on material strength, thickness, panel geometry/shape and outer and inner panel assembling. Due to the complexity of the problem, the verification of dent resistance of body panels is often done after the panels are formed and assembled. In this paper, a computer simulation technique was developed for dent resistance predictions, which can potentially be used in early design stages before panels are produced. Simulation techniques are discussed using explicit finite element method (FEA) for forming simulation and implicit FEA for denting simulation. A lab stretch dome panel is used to demonstrate the feasibility of computer simulation for dent resistance prediction. The stretch dome panel, with double curvature geometry, is formed to 2% biaxial strain and then subjected to several incremental static loads until 0.2 mm dent depth is reached.
Technical Paper

Development of Dynamic Dent Resistance Testing Procedures

2003-03-03
2003-01-0607
The dent resistance of an automotive body panel has been used as one of key design parameters for automotive body panels. Quasi-static dent testing procedures have been well documented in North America using A/SP Standard Dent Resistance Test Procedures and numerous publications in static denting are also available. However, test procedures under dynamic denting are not very well documented and limited data exist on dynamic denting performance of automotive body panels. In this paper, dynamic dent tests are carried out using different impact velocities and different test procedures. The advantages and disadvantages of test procedures are discussed. Different ways to characterize the dynamic dent test results are investigated and discussed. Due to higher impact velocity during the dynamic dent testing, the acceleration effect must be considered in the data analysis. Experiments were carried out on a hydraulic controlled dynamic dent tester.
X