Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Neutron Imaging of Diesel Particulate Filters

2009-11-02
2009-01-2735
This article presents nondestructive neutron computed tomography (nCT) measurements of Diesel Particulate Filters (DPFs) as a method to measure ash and soot loading in the filters. Uncatalyzed and unwashcoated 200cpsi cordierite DPFs exposed to 100% biodiesel (B100) exhaust and conventional ultra low sulfur 2007 certification diesel (ULSD) exhaust at one speed-load point (1500 rpm, 2.6 bar BMEP) are compared to a brand new (never exposed) filter. Precise structural information about the substrate as well as an attempt to quantify soot and ash loading in the channel of the DPF illustrates the potential strength of the neutron imaging technique.
Technical Paper

Flamelet Modeling with LES for Diesel Engine Simulations

2006-04-03
2006-01-0058
Large Eddy Simulation (LES) with a flamelet time scale combustion model is used to simulate diesel combustion. The flamelet time scale model uses a steady-state flamelet library for n-heptane indexed by mean mixture fraction, mixture fraction variance, and mean scalar dissipation rate. In the combustion model, reactions proceed towards the flamelet library solution at a time scale associated with the slowest reaction. This combination of a flamelet solution and a chemical time scale helps to account for unsteady mixing effects. The turbulent sub-grid stresses are simulated using a one-equation, non-viscosity LES model called the dynamic structure model. The model uses a tensor coefficient determined by the dynamic procedure and the subgrid kinetic energy. The model has been expanded to include scalar mixing and scalar dissipation. A new model for the conditional scalar dissipation has been developed to better predict local extinction.
X