Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Pedestrian Lower Extremity Response and Injury: A Small Sedan vs. A Large Sport Utility Vehicle

2008-04-14
2008-01-1245
Vehicle front-end geometry and stiffness characteristics have been shown to influence pedestrian lower extremity response and injury patterns. The goal of this study is to compare the lower extremity response and injuries of post mortem human surrogates (PMHS) tested in full-scale vehicle-pedestrian impact experiments with a small sedan and a large sport utility vehicle (SUV). The pelves and lower limbs of six PMHS were instrumented with six-degree-of-freedom instrumentation packages. The PMHS were then positioned laterally in mid-stance gait and subjected to vehicle impact at 40 km/h with either a small sedan (n=3) or a large SUV (n=3). Detailed descriptions of the pelvic and lower extremity injuries are presented in conjunction with global and local kinematics data and high speed video images. Injured PMHS knee joints reached peak lateral bending angles between 25 and 85 degrees (exceeding published injury criteria) at bending rates between 1.1 deg/ms and 3.7 deg/ms.
Technical Paper

Biofidelity Improvements to the Polar-II Pedestrian Dummy Lower Extremity

2007-04-16
2007-01-0757
Experimental tests were performed on the modified Polar-II pedestrian dummy lower extremity components to evaluate their biofidelity in lateral impact loading corresponding to a 40 km/h pedestrian-car collision. The bending moment-angle response from a newly developed knee joint, dynamically loaded in four-point valgus bending, was compared against previously published postmortem human subject (PMHS) response corridors. In addition to the stiffness characteristics of the knee joint, individual ligament forces were also recorded during the bending tests. The evaluated force-relative elongation response of the medial collateral ligament (MCL) in the new knee was compared against PMHS data on MCL tensile stiffness. Lower extremity long bones developed for improved anthropometrical accuracy and deformability were dynamically loaded in latero-medial three-point bending.
Technical Paper

A Comparative Evaluation of Pedestrian Kinematics and Injury Prediction for Adults and Children upon Impact with a Passenger Car

2004-03-08
2004-01-1606
Studies show that the pedestrian population at high risk of injury consists of both young children and adults. The goal of this study is to gain understanding in the mechanisms that lead to injuries for children and adults. Multi-body pedestrian human models of two specific anthropometries, a 6year-old child and a 50th percentile adult male, are applied. A vehicle model is developed that consists of a detailed rigid finite element mesh, validated stiffness regions, stiff structures underlying the hood and a suspension model. Simulations are performed in a test matrix where anthropometry, impact speed and impact location are variables. Bumper impact occurs with the tibia of the 50th percentile adult male and with the thigh of the 6-year-old child. The head of a 50th percentile male impacts the lower windshield, while the 6-year-old child's head impacts the front part of the hood.
Technical Paper

Response of the Knee Joint to the Pedestrian Impact Loading Environment

2004-03-08
2004-01-1608
Isolated knee joints from Post Mortem Human Subjects (PMHS) were tested in dynamic lateral-medial valgus loading that replicated a vehicle-pedestrian impact at 40 km/h. Eight specimens were tested in 4-point bending (pure bending) and eight specimens were tested in 3-point bending in configurations chosen to apply varying proportions of moment and shear at the knee joint. The medial collateral ligament (MCL) was the only major load bearing knee structure that was injured in the experiments. Applied loads (bending moment and shear force) and knee response (bending angle and shear displacement) are reported in order to provide information for determination of injury thresholds and for the validation of computational models and mechanical legform impactors.
Technical Paper

Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria

2003-03-03
2003-01-0895
Previous lateral knee bending and shear tests have reported knee joint failure moments close to failure bending moments for the tibia and femur. Eight tibias, eight femurs and three knee joints were tested in lateral bending and two knee joints were tested in lateral shear. Seven previous studies on femur bending, five previous studies on tibia bending, two previous studies on knee joint bending, and one on shear were reviewed and compared with the current tests. All knee joint failures in the current study were either epiphysis fractures of the femur or soft tissue failures. The current study reports an average lateral failure bending moment for the knee joint (134 Nm SD 7) that is dramatically lower than that reported in the literature (284-351 Nm), that reported in the current study for the tibia (291 Nm SD 69) and for femur (382 Nm SD 103).
Technical Paper

Characterization of the Rate-Dependent Mechanical Properties and Failure of Human Knee Ligaments

2005-04-11
2005-01-0293
The structural properties of the four major human knee ligaments were investigated at different loading rates. Bone-ligament-bone specimens of the medial and lateral collateral ligaments and the anterior and posterior cruciate ligaments, obtained from post-mortem human donors, were tested in knee distraction loading in displacement control. All ligaments were tested in the anatomical position corresponding to a fully extended knee. The rate dependence of the structural response of the knee ligaments was investigated by applying loading-unloading cycles at a range of distraction rates. Ramps to failure were applied at knee distraction rates of 0.016 mm/s, 1.6 mm/s, or 1,600 mm/s. Averages and corridors were constructed for the force response and the failure point of the different ligaments and loading rates. The structural response of the knee ligaments was found to depend on the deformation rate, being both stiffer and more linear at high loading rates.
Technical Paper

Experimental Investigation of the Response of the Human Lower Limb to the Pedestrian Impact Loading Environment

2005-04-11
2005-01-1877
Three limbs were taken from post mortem human subjects and impacted on the lateral aspect by a free-flying (30 km/h) impactor below the knee joint. Tri-axial MHDs and tri-axial accelerometers were used to determine the kinematics of the limb; strain gages were used to measure surface strain on the tibia and femur; and acoustic sensors were used to identify the onset and timing of injury. This data set was analyzed to compute the response of the knee joint to a bumper impact. Post-test necropsy results showed that the primary injury mechanism in each case was complete avulsion of the Medial Collateral Ligament (MCL) and the Anterior Cruciate Ligament (ACL).
X