Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Impact of Oxidation on Lubricating Properties of Biodiesel Blends

2013-10-14
2013-01-2596
The lubricating efficiency is an important property of diesel fuel since several diesel engine parts, such as pumps and injectors, are lubricated by the fuel itself only. The evolution of oxidation products during oxidative deterioration may as well affect the lubricating properties of the biodiesel fuel blends and thus the proper functioning of a diesel engine. In this study Fatty Acid Methyl Esters were produced from various types of feedstock that significantly differentiate in their fatty acid profile. Each methyl ester was blended with an Ultra Low Sulphur Automotive Diesel (ULSD) at a concentration of 7% v/v which is currently the maximum acceptable FAME content according to the European Standard EN590. The B7 biodiesel blends were evaluated regarding fundamental physicochemical properties as well as their lubricating efficiency. Oxidation stability was examined on a Rancimat apparatus according to EN 15751 standard.
Technical Paper

Tribological Evaluation of the Aviation Kerosene for Use in CI Engines

2009-11-02
2009-01-2804
To reduce the fuel related logistic burden, NATO Armed Forces are advancing the use of a single fuel for both aircraft and ground equipment. To this end, F-34 is replacing distillate diesel fuel in many applications. Yet, unacceptable wear due to poor lubricity was illustrated by tests conducted with kerosene on High Frequency Reciprocating Rig. Therefore, HFRR tests were performed with fatty acid methyl esters of sunflower, palm, cotton-seed, tobacco-seed, olive, rape-seed and used frying oils, at volume concentrations from 0.05% to 0.6%. This study showed that the biodiesels used, produced a significant decrease in the wear scar diameter at concentrations of 0.2% to 0.4 %. Biodiesels derived from non-polyunsaturated oils, such as palm and olive gave better lubrication at certain concentrations.
X