Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Fuel Injection System for Opposed-Piston Gasoline Compression-Ignited (OP-GCI) Engines

2019-04-02
2019-01-0287
Opposed-piston engines have been in production since before the 1930’s because of their inherent low heat losses and high thermal efficiency. Now, opposed-piston gasoline compression ignition (OP-GCI) engines are being developed for automotive transportation with stringent emissions targets. Due to the opposed-piston architecture and the absence of a cylinder head, fuel injection requirements and packaging are significantly different than conventional 4-stroke engines with central-mounted injectors. The injection process and spray characteristics are fundamental to achieving a successful combustion system with high efficiency, low emissions, and low combustion noise. In this paper, the fuel injection system for the Achates 2.7L, 3-cylinder OP-GCI engine is described. The fuel system was designed for 1800 bar maximum fuel pressure with two injectors mounted diametrically opposed in each cylinder.
Journal Article

Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition

2019-04-02
2019-01-1154
Continued improvement in the combustion process of internal combustion engines is necessary to reduce fuel consumption, CO2 emissions, and criteria emissions for automotive transportation around the world. In this paper, test results for the Gen3X Gasoline Direct Injection Compression Ignition (GDCI) engine are presented. The engine is a 2.2L, four-cylinder, double overhead cam engine with compression ratio ~17. It features a “wetless” combustion system with a high-pressure direct injection fuel system. At low load, exhaust rebreathing and increased intake air temperature were used to promote autoignition and elevate exhaust temperatures to maintain high catalyst conversion efficiency. For medium-to-high loads, a new GDCI-diffusion combustion strategy was combined with advanced single-stage turbocharging to produce excellent low-end torque and power. Time-to-torque (TT) simulations indicated 90% load response in less than 1.5 seconds without a supercharger.
X