Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Phased Air/Fuel Ratio Perturbation - A Fuel Control Technique for Improved Catalyst Efficiency

2000-03-06
2000-01-0891
This paper describes the results of a study that examined the mechanism of phased perturbation as an emissions control technique. Phased perturbation involves independently controlling the fuel delivered to each bank of a dual bank engine (or each cylinder of a single manifold engine), which allows the two banks to have an adjustable, relative Air/Fuel (A/F) perturbation phase-shift from one another. The phase shifted exhaust is then recombined to achieve a near stoichiometric mixture prior to entering a single underbody catalyst. Phase shifting the exhaust Air/Fuel ratio creates a situation in which both rich exhaust constituents (unburnt hydrocarbons and carbon monoxide) and lean exhaust constituents (oxygen and oxides of nitrogen) arrive at the catalyst at the same time. The results of the study showed that phased perturbation produced a significant effect on A/F control and catalyst THC, CO, and NOx efficiency.
Technical Paper

Effect of Phased Air/Fuel Ratio Perturbation and Catalyst O2 Storage Capability on Catalyst Conversion Efficiency

2000-10-16
2000-01-2924
Recent internal research performed at SwRI examined an emissions control mechanism that we have labeled, ‘phased A/F perturbation.’ The suggested mechanism of phased perturbation involves independently controlling the fuel delivered to each bank of a dual bank engine, which allows the two banks to have an adjustable, relative A/F perturbation phase-shift from one another. Exhaust from the two banks can be combined to achieve a near-stoichiometric mixture prior to entering a single underbody catalyst. Since both rich and lean exhaust species would be present simultaneously, a highly reactive mixture would continuously enter the catalyst. In that work, it was found that A/F phasing produced as significant an effect on conversion efficiency as perturbation amplitude and frequency, i.e. A/F phasing was identified as a third dimension for optimization of exhaust gas composition as it enters the catalyst.
X