Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Shell Elements Based Parametric Modeling Method in Frame Robust Design and Optimization

2011-04-12
2011-01-0508
Shell Elements based Parametric Frame Modeling is a powerful CAE tool, which can generate robust frame design concept optimized for NVH and durability quickly when combined with Taguchi Design of Experiments. The scalability of this modeling method includes cross members length/location/section/shape, frame rail segments length/section and kick in/out/up/down angle, and access hole location & size. In the example of the D. O. E. study, more than fifteen parameters were identified and analyzed for frequency and weight. The upper and lower bounds were set for each design parameter based on package and manufacturing constraints. Sixteen Finite Element frame were generated by parametrically updating the base model, which shows this modeling method is comparatively convenient. Sensitivity of these sixteen parameters to the frequency and weight was summarized through statics, so the favorable design alternative can be achieved with the major parameters' combination.
Technical Paper

On Automotive Disc Brake Squeal Part I: Mechanisms and Causes

2003-03-03
2003-01-0683
The understanding, prediction and prevention of brake squeal is a difficult and challenging problem because of the large number of design variables involved in a complex brake system and many operational and environmental conditions under which squeal may occur. The design variables may have different optimal values and different contribution trends for different brake systems. Since the 1930's, much progress has been made in gaining physical insight into brake squeal mechanisms and causes, and brakes have become quieter. However, the recurring occurrence of disc brake squeal indicates that our understanding of the phenomenon is both insufficient and incomplete, and that brake squeal is still a quality issue in the automotive industry and its prevention is far from reality. Part I of this series of articles first reviews the various hypotheses put forth for brake squeal mechanisms and causes.
Technical Paper

Identification of In-Plane and Out-of-Plane Modal Coupling Mechanism in Brake Squeal by the Empirical Mode Decomposition Method

2003-03-03
2003-01-0682
Experimental verification is an important approach for understanding the mechanisms of disc brake squeal. One mechanism of disc brake squeal, i.e., coupling of in-plane and out-of-plane vibration modes of disc brake rotor, was found by experiments. Despite the vast amount of experimental data available, little effort has been dedicated to exploring what the time series information can reveal in relevance to squeal. In this paper, a new signal processing tool employing the Empirical Mode Decomposition Method (EMD) and its application to the identification of the characteristics of disc brake squeal will be discussed. The EMD was originally developed for ocean wave mechanics [1] and is particularly useful for the type of non-stationary data found in disc brake squeal. EMD is a time series analysis method that extracts a set of basis functions describing the fundamental characteristics of the response of a system.
Technical Paper

Lattice Brake Disc Instability Analysis Using Transient Complex Eigenvalue Method in Terms of Excitation Applied to the Pad

2018-04-03
2018-01-0091
This paper describes an integrated approach to the analysis of brake squeal with newly lattice brake disc design. The procedure adopted to define the lattice properties by considering the periodicity cell of lattice plates, present equations of motion and modes response of a periodic lattice disc in principal coordinates on the rotating disc which excited by distributed axial load. The non-linear contact problem is carried out based on a typical passenger car brake for vanned and lattice brake disc types as it undergoes a partial simulation of the SAE J2521 drag braking noise test. The experimental modal analysis (EMA) with impact hammer test is used to obtain the brake rotor modal properties and validated finite element Free- Free State and stability analysis. The fugitive nature of brake squeal is analyzed through the complex eigenvalue extraction technique to define dynamic instability.
Technical Paper

Suppression of Self-Excited Vibration by Dither Technique with Potential Application to Reduce Brake Squeal

2004-10-10
2004-01-2790
Disc brake squeal is a manifestation of the friction-induced self-excited instability of the brake system. One of known techniques in suppressing dynamic instabilities in nonlinear systems is by applying dither. The focus of this paper is to examine, through numerical examples, the feasibility and effects of dither on nonlinear systems as a means of quenching large-amplitude limit cycles. In particular, various ways of introducing the dither, either via modifications of the system characteristics or as external excitation, are explored. The investigation is extended to a disc brake system using finite elements simulations. Numerical results show that large-amplitude vibrations can be suppressed by dither and careful tuning of the amplitude and frequency of the dither can result in an effective quenching. The potential application of this technique to disc brake squeal control is also discussed.
Book

Disc Brake Squeal

2005-12-13
Chapters written by professional and academic experts in the field cover: analytical modeling and analysis, CEA modeling and numerical methods, techniques for dynamometer and road test evaluation, critical parameters that contribute to brake squeal, robust design processes to reduce/prevent brake squeal via up-front design, and more.
X