Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Engine Control Using Torque Estimation

2001-03-05
2001-01-0995
In recent years, the increasing interest and requirements for improved engine diagnostics and control has led to the implementation of several different sensing and signal processing technologies. In order to optimize the performance and emission of an engine, detailed and specified knowledge of the combustion process inside the engine cylinder is required. In that sense, the torque generated by each combustion event in an IC engine is one of the most important variables related to the combustion process and engine performance. This paper introduces torque estimation techniques in the real-time basis for engine control applications using the measurement of crankshaft speed variation. The torque estimation scheme presented in this paper consists of two entirely different approaches, “Stochastic Analysis” and “Frequency Analysis”.
Technical Paper

Model-Based Fault Diagnosis of Spark-Ignition Direct-Injection Engine Using Nonlinear Estimations

2005-04-11
2005-01-0071
In this paper, the detection and isolation of actuator faults (both measured and commanded) occurring in the engine breathing and the fueling systems of a spark-ignition direct-injection (SIDI) engine are described. The breathing system in an SIDI engine usually consists of a fresh air induction path via an electronically controlled throttle (ECT) and an exhaust gas recirculation (EGR) path via an EGR valve. They are dynamically coupled through the intake manifold to form a gas mixture, which eventually enters the engine cylinders for a subsequent combustion process. Meanwhile, the fueling system is equipped with a high-pressure common-rail injection for a precise control of the fuel quantity directly injected into the engine cylinders. Since the coupled system is highly nonlinear in nature, the fault diagnosis will be performed by generating residuals based on multiple nonlinear observers.
Technical Paper

A Methodology for Virtual Engine Mapping Test of CIDI Engine with Arbitrary Fuel Injection Schedule for Control Purpose

2005-04-11
2005-01-0230
With the introduction of common rail fuel injection system enabling multiple injections per stroke and stringent pollutant emission standards, the optimization and calibration of modern compression ignition direct injection (CIDI) engines become more complex. Thus, a simple and efficient tool for CIDI combustion simulation with arbitrary fuel injection profile is required today. A crank-angle resolved combustion model was developed and validated by using a fuel injection rig and an engine dynamometer for the parameterization. With the calibrated models, accurate prediction of the in-cylinder pressure and NOx and also a virtual dynamometer mapping are possible. The results from these virtual mappings can be used to calibrate the black-box combustion models in control-oriented, dynamic Mean Value Models (MVM).
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

Two-Zone Heat Release Analysis of Combustion Data and Calibration of Heat Transfer Correlation in an I. C. Engine

1999-03-01
1999-01-0218
Typically, the combustion analysis for S.I. engines is limited to the determination of the apparent heat release from in-cylinder pressure measurements, effectively using a single zone approach with constant properties determined at some average temperature. In this paper, we follow an approach consistent with the engine modeling approach (i.e., reverse modeling) to extract heat release rate from combustion pressure data. The experimental data used here solely consists of quantities measured in a typical engine dynamometer tests, namely the crank-angle resolved cylinder pressure, as well as global measurements of the A/F ratio, engine speed, load, EGR, air mass flow rate and temperature and exhaust emissions. We then perform a two-zone, crank-angle resolved analysis of the pressure data using variable composition and properties.
Technical Paper

Crankangle Based Torque Estimation: Mechanistic / Stochastic

2000-03-06
2000-01-0559
Actual stringent regulations on emission level imply highly efficient control strategies, which can be based on the instantaneous engine torque or the in-cylinder pressure. To reach this objective, while avoiding costly direct measurements, the estimation of one of these variables is required. In this paper, two methods are presented based on the correlation between the crankshaft velocity and the indicated torque or pressure. In the “mechanistic method”, the model based on the dynamics of the reciprocating engine and on a correlation with the combustion process provides a relationship between the fluctuating component of the instantaneous crankshaft acceleration and the average indicated torque of the firing cylinders. Thus, an indicated torque signature of each cylinder can be estimated from the observation of the crankshaft acceleration.
X