Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Supercharging with Turbo-Compounding - A Novel Strategy to Boost Single Cylinder Diesel Engines

2022-08-30
2022-01-1113
Mass-production single-cylinder engines are generally not turbocharged due to pulsated exhaust flow. Hence, about one-third of the fuel chemical energy is wasted in the engine exhaust. To extract the exhaust energy and boost the single-cylinder engines, a novel supercharging with a turbo-compounding strategy is proposed in the present work, wherein an impulse turbine extracts energy from the pulsated exhaust gas flow. Employing an impulse turbine for a vehicular application, especially on a single-cylinder engine, has never been commercially attempted. Hence, the design of the impulse turbine assumes higher importance. A nozzle, designed as a stator part of the impulse turbine and placed at the exhaust port to accelerate the flow velocity, was included as part of the layout in the present work. The layout was analyzed using the commercial software AVL BOOST. Different nozzle exit diameters were considered to analyze their effect on the exhaust back pressure and engine performance.
Technical Paper

Investigations on a Novel Supercharging and Impulse Turbo-Compounding of a Single Cylinder Diesel Engine

2022-08-30
2022-01-1111
Single-cylinder engines in mass production are generally not turbocharged due to the pulsated and intermittent exhaust gas flow into the turbocharger and the phase lag between the intake and exhaust stroke. The present work proposes a novel approach of decoupling the turbine and the compressor and coupling them separately to the engine to address these limitations. An impulse turbine is chosen for this application to extract energy during the pulsated exhaust flow. Commercially available AVL BOOST software was used to estimate the overall engine performance improvement of the proposed novel approach compared to the base naturally aspirated (NA) engine. Two different impulse turbine layouts were analyzed, one without an exhaust plenum and the second layout having an exhaust plenum before the power turbine. The merits and limitations of both layouts are compared in the present study.
Technical Paper

Investigations on Supercharging and Turbo-Compounding of a Single Cylinder Diesel Engine

2022-03-29
2022-01-0423
Despite the advantages of turbocharging in improved engine performance and reduced exhaust emissions, commercial single-cylinder engines used for automotive applications remain naturally aspirated (NA) and are not generally turbocharged. This is due to the shortcomings with pulsated and intermittent exhaust gas flow into the turbine and the phase lag between the intake and exhaust stroke. In the present study, experimental investigations are initially carried out with a suitable turbocharger closely coupled to a single-cylinder diesel engine. Results indicated that the engine power dropped significantly by 40% for the turbocharged engine compared to the NA version even though the air mass flow rate was increased by at least 1.5 times with turbocharging. A novel approach of decoupling the turbine and the compressor and coupling them separately to the engine is proposed to address these limitations.
X