Refine Your Search

Search Results

Technical Paper

A Holistic Approach to Develop a Common Rail Single Cylinder Diesel Engine for Bharat Stage VI Emission Legislation

2020-04-14
2020-01-1357
The upcoming Bharat Stage VI (BS VI) emission legislation has put enormous pressure on the future of small diesel engines which are widely used in the Indian market. The present work investigates the emission reduction potential of a common rail direct injection single cylinder diesel engine by adopting a holistic approach of lowering the compression ratio, boosting the intake air and down-speeding the engine. Experimental investigations were conducted across the entire operating map of a mass-production, light-duty diesel engine to examine the benefits of the proposed approach and the results are quantified for the modified Indian drive cycle (MIDC). By reducing the compression ratio from 18:1 to 14:1, the oxides of nitrogen (NOx) and soot emissions are reduced by 40% and 75% respectively. However, a significant penalty in fuel economy, unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are observed with the reduced compression ratio.
Technical Paper

Transient Emission Characteristics of a Light Duty Commercial Vehicle Powered by a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1181
Adopting a low compression ratio (LCR) is a viable approach to meet the stringent emission regulations since it can simultaneously reduce the oxides of nitrogen (NOx) and particulate matter (PM) emissions. However, significant shortcomings with the LCR approach include higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions and fuel economy penalties. Further, poor combustion stability of LCR engines at cold ambient and part load conditions may worsen the transient emission characteristics, which are least explored in the literature. In the present work, the effects of implementing the low compression ratio (LCR) approach in a mass-production light-duty vehicle powered by a single-cylinder diesel engine are investigated with a major focus on transient emission characteristics.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
Technical Paper

Experimental Investigations on a Jatropha Oil Methanol Dual Fuel Engine

2001-03-05
2001-01-0153
Use of vegetable oils in diesel engines results in increased smoke and reduced brake thermal efficiency. Dual fuel engines can use a wide range of fuels and yet operate with low smoke emissions and high thermal efficiency. In this work, a single cylinder diesel engine was converted to use vegetable oil (Jatropha oil) as the pilot fuel and methanol as the inducted primary fuel. Tests were conducted at 1500 rev/min and full load. Different quantities of methanol and Jatropha oil were used. Results of experiments with diesel as the pilot fuel and methanol as the primary fuel were used for comparison. Brake thermal efficiency increased in the dual fuel mode when both Jatropha oil and diesel were used as pilot fuels. The maximum brake thermal efficiency was 30.6% with Jatropha oil and 32.8% with diesel. Smoke was drastically reduced from 4.4 BSU with pure Jatropha oil operation to 1.6 BSU in the dual fuel mode.
Technical Paper

Experimental Investigation on the Use of Water Diesel Emulsion with Oxygen Enriched Air in a DI Diesel Engine

2001-03-05
2001-01-0205
A single cylinder, direct injection diesel engine was run on water diesel emulsion at a constant speed of 1500 rpm under variable load conditions. Water to diesel ratio of 0.4 on the mass basis was used. Tests indicated a considerable reduction in smoke and NO levels. This was accompanied by an increase in brake thermal efficiency at high outputs. HC & CO levels, ignition delay and rate of pressure rise went up. The heat release rate in the premixed burn period was higher. When the oxygen concentration in the intake air was enhanced in steps up to 25% along with the use of water diesel emulsion, the brake thermal efficiency was improved and there was a further reduction in the smoke level. HC and CO levels also dropped. NO emission went up due to increased temperature and oxygen availability. An oxygen concentration of 24% by volume was optimal as the NO levels were near about base diesel values.
Technical Paper

Evaluation of Low-Pressure EGR System on NOx Reduction Potential of a Supercharged LCR Single-Cylinder Diesel Engine

2022-03-29
2022-01-0447
Supercharging a single-cylinder diesel engine has proved to be a viable methodology to reduce engine-out emissions and increase full-load torque and power. The increased air availability of the supercharger (SC) system helps to inject more fuel quantity that can improve the engine's full-load brake mean effective pressure (BMEP) without elevating soot emissions. However, the increased inlet temperature of the boosted air and the availability of excess oxygen can pose significant challenges to contain oxides of nitrogen (NOx) emissions. Hence, it is important to investigate the potential NOx reduction options in supercharged diesel engines. In the present work, the potential of low-pressure exhaust gas recirculation (LP EGR) was evaluated in a single-cylinder supercharged diesel engine for its benefits in NOx emission reduction and impact on other criteria emissions and brake specific fuel consumption (BSFC).
Technical Paper

A Comparison of Different Warm-up Technologies on Transient Emission Characteristics of a Low-Compression Ratio Light-duty Diesel Engine

2022-03-29
2022-01-0482
It is well established that reducing the compression ratio (CR) of a diesel engine leads to a significant increase in hydrocarbon (HC) and carbon monoxide (CO) emissions, especially in cold and transient conditions. Hence, it is essential to find new strategies to reduce the HC and CO emissions of a low compression ratio (LCR) diesel engine in transient conditions. In the present work, a detailed evaluation of different warm-up technologies was conducted for their effects on transient emissions characteristics of a single-cylinder naturally aspirated LCR diesel engine. For this purpose, the engine was coupled to an instrumented transient engine dynamometer setup. A transient cycle of 160 seconds with starting, idling, speed ramp-up and load ramp-up was defined, and the engine was run in automatic mode by the dynamometer. The experiments were conducted by overnight soaking the engine at a specified temperature of 25 deg.C.
Technical Paper

Supercharging with Turbo-Compounding - A Novel Strategy to Boost Single Cylinder Diesel Engines

2022-08-30
2022-01-1113
Mass-production single-cylinder engines are generally not turbocharged due to pulsated exhaust flow. Hence, about one-third of the fuel chemical energy is wasted in the engine exhaust. To extract the exhaust energy and boost the single-cylinder engines, a novel supercharging with a turbo-compounding strategy is proposed in the present work, wherein an impulse turbine extracts energy from the pulsated exhaust gas flow. Employing an impulse turbine for a vehicular application, especially on a single-cylinder engine, has never been commercially attempted. Hence, the design of the impulse turbine assumes higher importance. A nozzle, designed as a stator part of the impulse turbine and placed at the exhaust port to accelerate the flow velocity, was included as part of the layout in the present work. The layout was analyzed using the commercial software AVL BOOST. Different nozzle exit diameters were considered to analyze their effect on the exhaust back pressure and engine performance.
Technical Paper

Investigations on a Novel Supercharging and Impulse Turbo-Compounding of a Single Cylinder Diesel Engine

2022-08-30
2022-01-1111
Single-cylinder engines in mass production are generally not turbocharged due to the pulsated and intermittent exhaust gas flow into the turbocharger and the phase lag between the intake and exhaust stroke. The present work proposes a novel approach of decoupling the turbine and the compressor and coupling them separately to the engine to address these limitations. An impulse turbine is chosen for this application to extract energy during the pulsated exhaust flow. Commercially available AVL BOOST software was used to estimate the overall engine performance improvement of the proposed novel approach compared to the base naturally aspirated (NA) engine. Two different impulse turbine layouts were analyzed, one without an exhaust plenum and the second layout having an exhaust plenum before the power turbine. The merits and limitations of both layouts are compared in the present study.
Technical Paper

Studies on Dual Fuel Operation of Karanja Oil and Its Bio-Diesel with LPG as the Inducted Fuel

2006-04-03
2006-01-0237
A diesel engine was operated with karanja oil, bio-diesel obtained from karanja oil (BDK) and diesel as pilot fuels while LPG was used as primary fuel. LPG supply was varied from zero to the maximum value that the engine could tolerate. The engine output was kept at different constant levels of 25%, 50%, 75% and 100% of full load. The thermal efficiency improved at high loads. Smoke level was reduced drastically at all loads. CO and HC levels were reduced at full load. There was a slight increase in the NO level. Combustion parameters indicated an increase in the ignition delay. Peak pressure and rate of pressure rise were not unfavorably affected. There was an increase in the peak heat release rate with LPG induction. The amount of LPG that could be tolerated with out knock at full load was 49%, 53% and 61% on energy basis with karanja oil, BDK and diesel as pilots.
Technical Paper

Experimental Investigations of Different Parameters Affecting the Performance of a CNG - Diesel Dual Fuel Engine

2005-10-24
2005-01-3767
In a dual fuel engine a primary fuel that is generally a gas is mixed with air, compressed and ignited by a small pilot- spray of diesel as in a diesel engine. Dual fuel engines generally suffer from the problem of lower brake power and lower peak engine cylinder pressure due to lower volumetric efficiency, although an improvement in brake specific energy consumption is observed compared to pure diesel mode. Results indicate that with an increase in percentage of CNG substitution the brake power decreases. The exhaust gas temperature and peak cylinder pressure also decrease. The rate of pressure rise is higher at lower engine speeds (1100, 1400 rev/min), although at 1700 and 2000 rev/min it is lower. The delay period throughout the engine speed shows an increasing trend. The coefficient of variation is also higher throughout the engine speeds and shows an increasing trend. The brake specific energy consumption is lower at 1100, 1400 and 1700 rev/min and at 2000 rev/min it is higher.
Technical Paper

Investigations on Combustion and Performance Characteristics of a Turbocharged Natural gas and Pilot Ignition Dual Fuel Engine

2005-10-24
2005-01-3775
The increasing use of natural gas as a vehicle fuel has generated considerable research activity to characterize the performance of engines utilizing this fuel. A light duty prechamber diesel engine was run under naturally aspirated and turbocharged CNG- Diesel dual fuel mode at four engine speeds 1100, 1400, 1700 and 2000 rpm. The maximum percentage of CNG substitution continues up to the engine knock limited power. The experimental results indicate a fall in brake power under naturally aspirated CNG-Diesel dual fuel mode compared to neat diesel operation. It was due to decrease in volumetric efficiency and slower combustion. Although turbocharged dual fuel operation shows an increase in brake power as well as an improvement in brake specific energy consumption as it provides a better air/fuel mixing and improves the homogeneous natural gas/air charge.
Technical Paper

Experimental Studies on the Use of Methanol-Butanol Blends in a Hot Surface Ignition Engine

2023-04-11
2023-01-0316
The property of methanol to surface ignite can be exploited to use it in a diesel engine even though its cetane number is very low. Poor lubricity of methanol is still an issue and special additives are needed in order to safeguard the injection system components. In this work a common rail three cylinder, turbocharged diesel engine was run in the glow plug based hot surface ignition mode under different injection strategies with methanol as the main fuel in a blend with n-butanol. n-Butanol was used mainly to enhance the viscosity and lubricity of the blend. The focus was on the effect of different injection strategies. Initially three blends with methanol to n-butanol mass ratios of 60:40, 70:30 and 80:20 were evaluated experimentally with single pulse fuel injection. Subsequently the selected blend of 70:30 was injected as two pulses (with almost equal mass shares) with the gap between them and their timing being varied.
Technical Paper

Investigations on Supercharging and Turbo-Compounding of a Single Cylinder Diesel Engine

2022-03-29
2022-01-0423
Despite the advantages of turbocharging in improved engine performance and reduced exhaust emissions, commercial single-cylinder engines used for automotive applications remain naturally aspirated (NA) and are not generally turbocharged. This is due to the shortcomings with pulsated and intermittent exhaust gas flow into the turbine and the phase lag between the intake and exhaust stroke. In the present study, experimental investigations are initially carried out with a suitable turbocharger closely coupled to a single-cylinder diesel engine. Results indicated that the engine power dropped significantly by 40% for the turbocharged engine compared to the NA version even though the air mass flow rate was increased by at least 1.5 times with turbocharging. A novel approach of decoupling the turbine and the compressor and coupling them separately to the engine is proposed to address these limitations.
Technical Paper

Simulation Studies on Glow Plug Assisted Neat Methanol Combustion in a Diesel Engine

2022-03-29
2022-01-0519
Methanol has a very low cetane number but it can be used in the neat form in a glow plug based hot surface ignition (HSI) engine at CI engine compression ratios. A CFD simulation model of a glow plug assisted methanol HSI engine was developed and validated using experimental data reported in literature. A study on the effect of single and multipulse injection of methanol, glow plug surface temperature, injection pressure and effect of shielding it were conducted by applying the model on to a three cylinder neat methanol HSI engine. A glow surface temperature of 1273 K was found to be sufficient for ignition of methanol at 50% load while the distance between the glow plug and the injector affected the ignition delay. The sprays were ignited sequentially starting from the one closest the glow plug which resulted in extended combustion. Injecting methanol in double pulses reduced the Maximum Rate of Pressure Rise (MRPR).
Technical Paper

Use of Hydrogen Peroxide to Improve the Performance and Reduce Emissions of a CI Engine Fuelled with Water Diesel Emulsions

2008-04-14
2008-01-0653
Use of water diesel emulsions in diesel engines reduces simultaneously smoke and NOx emissions. However the ignition delay increases and there is a rise in the HC and CO levels as well. In this work hydrogen peroxide was added to water diesel emulsion and tested in a diesel engine. Initially the engine was run with water diesel emulsion (water to diesel ratio of 0.4:1). The water diesel emulsion with a H2O2/diesel ratio of 0.05 was used. The single cylinder diesel engine was tested at the rated speed of 1500 rpm. Brake thermal efficiency increased with hydrogen peroxide from 32.6% to 33.5% as compared to the plain emulsion at full load. These values are even better than neat diesel operation. CO and HC levels decreased significantly with the addition of H2O2. HC with the neat diesel engine at full load was 50 ppm. It rose to 75 ppm with water diesel emulsion and was controlled to 50 ppm when H2O2 was used. This is due to the strong oxidizing nature of H2O2.
Technical Paper

Fuel Injection Strategies for Improving Performance and Reducing Emissions of a Low Compression Ratio Diesel Engine

2021-09-21
2021-01-1166
The present work investigates the effects of lowering the compression ratio (LCR) from 18:1 to 14:1 and optimizing the fuel injection parameters across the operating range of a mass production light-duty diesel engine. The results were quantified for a regulatory Indian drive cycle using a one-dimensional simulation tool. The results show that the LCR approach can simultaneously reduce the oxides of nitrogen (NOx) and soot emissions by 28% and 64%, respectively. However, the unburned hydrocarbon (HC) and carbon monoxide (CO) emissions increased significantly by 305% and 119%, respectively, with a 4.5% penalty in brake specific fuel consumption (BSFC). Hence, optimization of fuel injection parameters specific to LCR operation was attempted. It was evident that advancing the main injection timing and reducing the injection pressure at low-load operating points can significantly help to reduce BSFC, HC and CO emissions with a slight increase in the NOx emissions.
Technical Paper

An Approach for Estimation of Ignition Delay in a Dual Fuel Engine

1999-03-01
1999-01-0232
The ignition delay of the pilot fuel in a dual fuel engine is different from that in a diesel engine because the primary fuel alters the properties of the charge, reduces the oxygen available and undergoes pre-ignition reactions during compression. In the present work, a correlation for the ignition delay in a biogas-diesel dual fuel engine has been proposed on the basis of experimental results. This correlation can be used if relevant parameters corresponding to diesel mode of operation and the properties of the gaseous fuel along with its concentration in the intake charge are known. The Hardenberg & Hase correlation for ignition delay in diesel engines has been modified for the dual fuel situation by bringing in to effect the changes in the temperature at the end of compression and oxygen concentration in the charge. The proposed correlation shows reasonable agreement with experimental results for a biogas-diesel dual fuel engine.
Technical Paper

Experimental Investigations on the Performance and Cold Starting Characteristics of a Low Compression Ratio Diesel Engine

2019-04-02
2019-01-0558
In this experimental work, the potential advantages of lowering the Compression Ratio (CR) of a diesel engine in terms of performance, combustion and emission related parameters along with the analysis and improvement in its cold starting characteristics are presented. The CR of a single cylinder direct injection common rail diesel engine used for light-duty automotive applications was lowered from 18:1 to 14:1 by suitable modifications to the combustion bowl while retaining its shape. The engine with both the CRs was tested on a dynamometer rig under similar operating and fuelling conditions. Additionally, experiments were carried out to determine the extent to which in-cylinder smoke emissions can be reduced when the Nitric Oxide (NO) levels of 14 CR are matched to the higher levels seen in 18CR. In order to evaluate cold start ability and idling stability of the engine with a reduced CR (14:1), the engine was instrumented inside a cold chamber.
Technical Paper

Modelling and Experimental Study of Internal EGR System for NOx Control on an Off-Road Diesel Engine

2014-10-13
2014-01-2645
This study deals with the development of an internal EGR (Exhaust Gas Recirculation) system for NOx reduction on a six cylinder, turbocharged intercooled, off-road diesel engine based on a modified cam with secondary lift. One dimensional thermodynamic simulation model was developed using a commercially available code. MCC heat release model was refined in the present work by considering wall impingement of the fuel as given by Lakshminarayanan et al. The NOx prediction accuracy was improved to a level of 90% by a generic polynomial fit between air excess ratio and prediction constants. Simulation results of base model were correlating to more than 95% with experimental results for ISO 8178 C1 test cycle. Parametric study of intake and exhaust valve events was conducted with 2IVO (Secondary Intake Valve Opening) and 2EVO (Secondary Exhaust Valve Opening) methods. Combinations of different opening angles and lifts were chosen in both 2IVO and 2EVO methods for the study.
X